Câu hỏi:

07/12/2025 14 Lưu

Cho hình biểu diễn miền nghiệm (phần không bị gạch) của một hệ bất phương trình dưới đây:

Cho hình biểu diễn miền nghiệm (phần không bị gạch) của một hệ bất phương trình dưới đây: (ảnh 1)

Đó là hệ bất phương trình nào?

A. \(\left\{ \begin{array}{l}2x + 3y > 6\\2x - y > 0\end{array} \right.\).                             
B. \(\left\{ \begin{array}{l}2x + 3y < 6\\2y - y > 0\end{array} \right.\).                    
C. \(\left\{ \begin{array}{l}2x + 3y > 3\\2x - y > 0\end{array} \right.\).    
D. \(\left\{ \begin{array}{l}2x + 3y \le 3\\x - 2y < 0\end{array} \right.\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn A

Gọi \(d:y = ax + b\) là đường thẳng đi qua hai điểm \(\left( {3;\,0} \right)\) và \(\left( {0;\,\,2} \right)\).

Khi đó, ta có \(\left\{ \begin{array}{l}0 = 3a + b\\2 = a \cdot 0 + b\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a =  - \frac{2}{3}\\b = 2\end{array} \right.\). Vậy \(d:y =  - \frac{2}{3}x + 2\) hay \(d:2x + 3y = 6\).

Từ đó, ta loại đáp án C và đáp án D.

Xét điểm \(\left( {3;\,\,2} \right)\) thuộc phần không bị gạch, ta có \(2 \cdot 3 + 3 \cdot 2 = 12 > 6\) nên điểm \(\left( {3;\,\,2} \right)\) thuộc miền nghiệm của bất phương trình \(2x + 3y > 6\). Vậy ta chọn đáp án A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \(\widehat {ACB} = 180^\circ  - 60^\circ  = 120^\circ \).

Xét tam giác \(ABC\), có \(\widehat {BAC} = 180^\circ  - \left( {\widehat {ABC} + \widehat {ACB}} \right) = 180^\circ  - \left( {30^\circ  + 120^\circ } \right) = 30^\circ \).

Do đó, tam giác \(ABC\) cân tại \(C\).

\( \Rightarrow AC = CB = 100\) m.

Ta có \(\widehat {ACH} = 90^\circ  - 60^\circ  = 30^\circ \).

Tam giác \(AHC\) vuông tại \(H\) nên \(AH = AC \cdot \sin \widehat {ACH} = 100 \cdot \sin 30^\circ  = 50\) m.

Vậy chiều cao của ngọn đồi là \(50\) m.

Lời giải

a) Hỏi tàu \(A\) cầ (ảnh 1)

Gọi thời gian để 2 tàu gặp nhau tại \(C\) là \(t\) (giờ, \(t > 0\)).

Quãng đường \(BC\) là \(20t\,\,\left( {{\rm{km}}} \right)\).

Quãng đường \(AC\) là \(30t\,\,\left( {{\rm{km}}} \right)\).

Áp dụng định lí sin cho tam giác \(ABC\), ta có

\[\frac{{BC}}{{\sin \alpha }} = \frac{{AC}}{{\sin B}} \Leftrightarrow \sin \alpha  = \frac{{BC \cdot \sin B}}{{AC}} = \frac{{20t \cdot \sin 124^\circ }}{{30t}} \approx 0,5527 \Rightarrow \alpha  \approx 34^\circ \].

Vậy tàu \(A\) chuyển động theo hướng tạo với vị trí ban đầu của tàu \(B\) một góc \(34^\circ \).

Xét tam giác \(ABC\), ta có \(\widehat C = 180^\circ  - \left( {\widehat B + \widehat A} \right) = 180^\circ  - \left( {124^\circ  + 34^\circ } \right) = 22^\circ \).

Áp dụng định lí sin, ta có

\(\frac{{BC}}{{\sin A}} = \frac{{AB}}{{\sin C}} \Leftrightarrow BC = \frac{{AB \cdot \sin A}}{{\sin C}} \Leftrightarrow 20t \approx \frac{{50 \cdot \sin 34^\circ }}{{\sin 22^\circ }} \Leftrightarrow t \approx 3,73\) (giờ).

Vậy sau khoảng \(3,73\) giờ thì tàu \(A\) đuổi kịp tàu \(B\).

Câu 3

A. \[ - 3x + y + 2 \ge 0\].         

B. \[ - 3x + y + 2 \le 0\].                             
C. \[3x + y - 2 \ge 0\].                             
D. \[3x + y - 2 \le 0\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(\sqrt 3 \).            
B. \(0\).                    
C. \(1\).                           
D. \( - 1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(A \cup B\).         
B. \(B\backslash A\).                            
C. \(A\backslash B\).                            
D. \(A \cap B\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(2x - y \le 4\).      
B. \(2x - y \ge 4\).    
C. \( - x + 2y \ge 4\).                       
D. \( - x + 2y \le 4\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\left\{ 2 \right\} \subset A\).              
B. \[\left[ { - 1;\,2} \right] \subset A\].                          
C. \[\left( { - 1;\,2} \right] \subset A\].                          
D. \(\left( { - 1;\,2} \right) \subset A\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP