Cho hình chóp \(S.ABCD,\) \(ABCD\) là hình thang có đáy là \(AD\) và \(BC,\) \(AD = 2BC.\) Gọi \(E\) là trung điểm \(SA,\) \(M\) là trọng tâm \(\Delta SAD,\) \(G\) là giao điểm của \(AC\) và \(BD.\)
a) Tìm giao tuyến của hai mặt phẳng \(\left( {MBC} \right)\) và \(\left( {SAD} \right).\)
b) Chứng minh \(MG\) song song với mặt phẳng \(\left( {SAB} \right)\)
Cho hình chóp \(S.ABCD,\) \(ABCD\) là hình thang có đáy là \(AD\) và \(BC,\) \(AD = 2BC.\) Gọi \(E\) là trung điểm \(SA,\) \(M\) là trọng tâm \(\Delta SAD,\) \(G\) là giao điểm của \(AC\) và \(BD.\)
a) Tìm giao tuyến của hai mặt phẳng \(\left( {MBC} \right)\) và \(\left( {SAD} \right).\)
b) Chứng minh \(MG\) song song với mặt phẳng \(\left( {SAB} \right)\)
Quảng cáo
Trả lời:

a) Tìm giao tuyến của hai mặt phẳng \(\left( {MBC} \right)\) và \(\left( {SAD} \right).\)
Xét \(\left( {MBC} \right)\) và \(\left( {SAD} \right)\) có
\(M\) là điểm chung, \(BC{\rm{ // }}AD,\) \(BC \subset \left( {MBC} \right),\) \(AD \subset \left( {SAD} \right).\)
Vậy giao tuyến của \(\left( {MBC} \right)\) và \(\left( {SAD} \right)\) là đường thẳng \(Mx\) song song với \(BC\) và \(AD.\)
b) Chứng minh \(MG\) song song với mặt phẳng \(\left( {SAB} \right)\).
Do \(BC{\rm{ // }}AD\) nên \(\Delta GBC\) và \(\Delta GAD\) đồng dạng (góc – góc).
Suy ra \(\frac{{DG}}{{GB}} = \frac{{AD}}{{BC}} = \frac{2}{1} \Rightarrow \frac{{DG}}{{DB}} = \frac{2}{3}.\)
Do \(DE\) là trung tuyến \(\Delta SAD\) và \(M\) là trọng tâm \(\Delta SAD\) nên ta có tỉ số \(\frac{{DM}}{{DE}} = \frac{2}{3}.\)
Khi đó, xét trong tam giác \(DEB\) có: \(\frac{{DM}}{{DE}} = \frac{{DG}}{{DB}} = \frac{2}{3} \Rightarrow MG{\rm{ // }}BE.\)
Mà \(BE \subset \left( {SAB} \right)\) nên \(MG{\rm{ // }}\left( {SAB} \right)\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) \[\,\mathop {\lim }\limits_{x \to - 1} \frac{{2{x^2} - x - 3}}{{1 - {x^2}}} = \mathop {\lim }\limits_{x \to - 1} \frac{{\left( {x + 1} \right)\left( {2x - 3} \right)}}{{\left( {1 - x} \right)\left( {1 + x} \right)}} = \mathop {\lim }\limits_{x \to - 1} \frac{{\left( {2x - 3} \right)}}{{\left( {1 - x} \right)}} = \frac{{2.\left( { - 1} \right) - 3}}{{1 - \left( { - 1} \right)}} = \frac{{ - 5}}{2}\]
b) \(\mathop {\lim }\limits_{x \to - \infty } \left( {\sqrt {4{x^2} - x} + 2x} \right)\)
\(\mathop {\lim }\limits_{x \to - \infty } \left( {\sqrt {4{x^2} - x} + 2x} \right) = \mathop {\lim }\limits_{x \to - \infty } \frac{{4{x^2} - x - 4{x^2}}}{{\sqrt {4{x^2} - x} - 2x}}\)
\( = \mathop {\lim }\limits_{x \to - \infty } \frac{{ - x}}{{ - x\sqrt {4 - \frac{1}{x}} - 2x}} = \mathop {\lim }\limits_{x \to - \infty } \frac{{ - 1}}{{ - \sqrt {4 - \frac{1}{x}} - 2}} = \frac{1}{4}\).
Câu 2
Lời giải
Chọn A
\(\lim \frac{{{3^n} - {{2.5}^n}}}{{{5^n} - {{2.3}^n}}} = \lim \frac{{{{\left( {\frac{3}{5}} \right)}^n} - 2.}}{{1 - 2.{{\left( {\frac{3}{5}} \right)}^n}}} = - 2\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.