Câu hỏi:

10/12/2025 212 Lưu

Một bà lão bán hàng có một rổ cam lớn chứa rất nhiều quả cam. Có người mua nửa số cam của bà được bà tặng thêm nửa quả. Một người khác đến tiếp và mua một nửa số cam còn lại cũng được bà tặng nửa quả…Cứ như thế đến người thứ mười ba cũng mua và được tặng như trên thì vừa hết số cam. Hỏi rổ cam ban đầu của bà có bao nhiêu quả?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Giả sử bà lão có \(x\) (quả cam) (\(x \in {\mathbb{N}^*}\))

Số cam của từng người mua lần lượt là:

+) Người thứ nhất: \(\frac{1}{{{2^1}}}\left( {x + 1} \right).\)

+) Người thứ hai: \(\frac{1}{{{2^2}}}\left( {x + 1} \right).\)

                 

+) Người thứ mười ba: \(\frac{1}{{{2^{13}}}}\left( {x + 1} \right).\)

Ta có phương trình: \(\frac{1}{{{2^1}}}\left( {x + 1} \right) + \frac{1}{{{2^2}}}\left( {x + 1} \right) + ...\frac{1}{{{2^{13}}}}\left( {x + 1} \right) = x.\)

\( \Leftrightarrow x = 8191.\) Vậy rổ cam ban đầu có \(8191\) quả cam.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình lăng trụ tam giác ABC.A'B'C'. Gọi G,G',I lần lượt là trọng tâm các tam giác ABC,A'B'C',ABB' (ảnh 1)

a) Gọi \(M,\,\,M'\) lần lượt là trung điểm của \(BC,\,\,B'C'\). Suy ra mặt phẳng \(\left( {A'BG'} \right)\) là mặt phẳng \(\left( {A'BM'} \right)\) và mặt phẳng \(\left( {AGC'} \right)\) là mặt phẳng \(\left( {AMC'} \right)\).

Ta có: các tứ giác \(AMM'A',\,\,BMC'M'\) là các hình bình hành.

Suy ra: \(A'M'\) song song \(AM\)\(BM'\) song song \(MC'.\)

\(A'M',\,\,BM' \subset \left( {A'BG'} \right);\,\,AM,\,\,MC' \subset \left( {AGC'} \right)\)

Suy ra: mặt phẳng \(\left( {A'BG'} \right)\) song song với mặt phẳng \(\left( {AGC'} \right).\)

b) Ta có: \(\frac{{A'I}}{{AB}} = \frac{{A'G'}}{{A'M'}} = \frac{2}{3} \Rightarrow IG'\) song song \(BM'.\)

Suy ra: \(IG'\) song song với mặt phẳng \(\left( {BCC'B'} \right).\)

Ta có: \(G \in AM \Rightarrow G \in \left( {AB'M} \right)\); \(H \in AB' \Rightarrow H \in \left( {AB'M} \right)\)\( \Rightarrow GH \subset \left( {AB'M} \right)\)

Suy ra: \(K = EF \cap \left( {AB'M} \right)\) hay \(K = EF \cap B'M\)\(H = GK \cap AB'\)

(Như hình vẽ)

Ta có: \(\frac{{MG}}{{GA}}.\frac{{AH}}{{HB'}}.\frac{{B'K}}{{KM}} = 1 \Rightarrow \frac{{AH}}{{AB'}} = 2.\) Vậy \(\frac{{AH}}{{AB'}} = 2.\)

Lời giải

Chọn B

Có \({u_n} = {u_1}{q^{n - 1}} \Leftrightarrow - 384 = 3{\left( { - 2} \right)^{n - 1}} \Leftrightarrow n = 8\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(1.\)               
B. \( - 1.\)          
C. \(\frac{1}{2}.\)       
D. \( - \frac{1}{2}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP