Cho cấp số nhân \[\left( {{u_n}} \right)\] có \[{u_1} = - 3\] và \[q = \frac{2}{3}\]. Mệnh đề nào sau đây đúng?
Cho cấp số nhân \[\left( {{u_n}} \right)\] có \[{u_1} = - 3\] và \[q = \frac{2}{3}\]. Mệnh đề nào sau đây đúng?
Quảng cáo
Trả lời:
Chọn C
Ta có: \[{u_5} = {u_1}.{q^4} = \left( { - 3} \right).{\left( {\frac{2}{3}} \right)^4} = - \frac{{16}}{{27}}\].
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn B
Vì ba số \[2x,_{}^{}3x + 3,_{}^{}5x + 5\] theo thứ tự là ba số hạng liên tiếp của một cấp số nhân
nên \[{\left( {3x + 3} \right)^2} = \left( {2x} \right).\left( {5x + 5} \right) \Leftrightarrow 9{x^2} + 18x + 9 = 10{x^2} + 10x \Leftrightarrow {x^2} - 8x - 9 = 0 \Leftrightarrow \left[ \begin{array}{l}x = - 1\\x = 9\end{array} \right.\]
Vì \(x\) là số nguyên dương nên \(x = 9\).
Lời giải
Chọn B
Ta có: \[\mathop {\lim }\limits_{x \to 3} \left[ {f\left( x \right) + g\left( x \right)} \right] = \mathop {\lim }\limits_{x \to 3} f\left( x \right) + \mathop {\lim }\limits_{x \to 3} g\left( x \right) = 3 + 5 = 8\].
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
D. \( - \infty \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.