Cho hình tam giác đều \(S.ABC\) có cạnh đáy bằng \(a\) và cạnh bên bằng \(b\) \(\left( {a \ne b} \right)\). Các mệnh đề sau đúng hay sai?
Cho hình tam giác đều \(S.ABC\) có cạnh đáy bằng \(a\) và cạnh bên bằng \(b\) \(\left( {a \ne b} \right)\). Các mệnh đề sau đúng hay sai?
a) Đoạn thẳng \(MN\) là đường vuông góc chung của \(AB\) và \(SC\) (\(M\) và \(N\) lần lượt là trung điểm của \(AB\) và \(SC\)).
b) Góc giữa các cạnh bên và mặt đáy bằng nhau.
c) Hình chiếu vuông góc của \(S\) lên trên mặt phẳng \(\left( {ABC} \right)\) là trọng tâm tam giác \(ABC\).
Quảng cáo
Trả lời:
|
a) Sai |
b) Đúng |
c) Đúng |
d) Đúng |

\(\Delta SAG = \Delta SBG = \Delta SCG\). Suy ra góc giữa các cạnh bên và đáy bằng nhau.
\[\left\{ \begin{array}{l}SA = SB = SC\\AB = AC = BC\end{array} \right.\], suy ra hình chiếu vuông góc của \(S\) lên trên mặt phẳng \(\left( {ABC} \right)\) là trọng tâm tam giác \(ABC\).
\(BC \bot \left( {SAI} \right) \Rightarrow BC \bot SA\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Phần 2. Câu trắc nghiệm đúng sai.
Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai
Gieo một con xúc xắc cân đối và đồng chất 2 lần liên tiếp. Gọi biến cố \(A\) là "Số chấm xuất hiện trên xúc xắc là số lẻ" và biến cố \(B\) là "Số chấm xuất hiện trên xúc xắc ở lần thứ hai lớn hơn 3 ".
Phần 2. Câu trắc nghiệm đúng sai.
Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai
Gieo một con xúc xắc cân đối và đồng chất 2 lần liên tiếp. Gọi biến cố \(A\) là "Số chấm xuất hiện trên xúc xắc là số lẻ" và biến cố \(B\) là "Số chấm xuất hiện trên xúc xắc ở lần thứ hai lớn hơn 3 ".
a) Biến cố xung khắc với biến cố \(A\) là biến cố \(\bar A\) được phát biểu như sau: "Số chấm xuất hiện trên xúc xắc ở lần thứ nhất là số chẵn"
b) \(P(\bar A) = \frac{{n(\bar A)}}{{n(\Omega )}} = \frac{1}{2}\)
c) \(P(\bar B) = P\left( {\overline A } \right)\)
Lời giải
|
a) Đúng |
b) Đúng |
c) Đúng |
d) Sai |
a) Biến cố \(\bar A\) là "Số chấm xuất hiện trên xúc xắc ở lần thứ nhất là số chẵn".
Biến cố \(\bar B\) là "Số chấm xuất hiện trên xúc xắc ở lần thứ hai nhỏ hơn hoặc bằng 3 ".
b) \(P(\bar A) = \frac{{n(\bar A)}}{{n(\Omega )}} = \frac{{18}}{{36}} = \frac{1}{2}\).
c) \(P(\bar B) = \frac{{n(\bar B)}}{{n(\Omega )}} = \frac{{18}}{{36}} = \frac{1}{2}.\)
d) \(P(\overline {AB} ) = \frac{{n(\overline {AB} )}}{{n(\Omega )}} = \frac{9}{{36}} = \frac{1}{4}.\)
Lời giải
Chọn C.
Gọi \(n\) (\(n\) là số nguyên dương) là số trận An chơi. Gọi \(A\) là biến cố “An thắng ít nhất 1 trận trong loạt chơi \(n\) trận". Suy ra \(\bar A\) là biến cố: "An thua tất cả \(n\) trận".
Ta có: \(P(A) = 1 - P(\bar A) = 1 - {(0,6)^n}\).
Theo giả thiết:
\(P(A) > 0,95 \Leftrightarrow 1 - {(0,6)^n} > 0,95 \Rightarrow {(0,6)^n} < 0,05 \Rightarrow n > {\log _{0,6}}0,05 \approx 5,86.{\rm{ }}\)
Số nguyên dương \(n\) nhỏ nhất thoả mãn là 6 (An chơi tối thiểu 6 trận).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \[45^\circ \].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \(\frac{{73}}{{126}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. \(x = 2\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.