Quảng cáo
Trả lời:
Trả lời: \(0,25\)
Lời giải
Gọi \(A\) là biến cố "Học sinh thích bóng đá", \(B\) là biến cố "Học sinh thích bóng rổ" và \(AB\) là biến cố "Học sinh thích bóng đá và bóng rổ".
Khi đó biến cố \(\bar A \cup \bar B\) là "Học sinh không thích cả bóng đá và bóng rổ".
Ta có \(P(\bar A \cup \bar B) = P(\bar A) + P(\bar B) - P(\overline {AB} ) = 1 - 0,45 + 1 - 0,6 - (1 - 0,3) = 0,25\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Trả lời: \( \approx {51,14^^\circ }\)
Trong mặt phẳng \(\left( {{A^\prime }{B^\prime }{C^\prime }{D^\prime }} \right)\), kẻ \({A^\prime }H \bot {B^\prime }{D^\prime }\) tại \(H\).
Ta có: \(\left\{ {\begin{array}{*{20}{l}}{{B^\prime }{D^\prime } \bot {A^\prime }H}\\{{B^\prime }{D^\prime } \bot A{A^\prime }\left( {{\rm{do }}A{A^\prime } \bot \left( {{A^\prime }{B^\prime }{C^\prime }{D^\prime }} \right)} \right)}\end{array} \Rightarrow {B^\prime }{D^\prime } \bot \left( {A{A^\prime }H} \right) \Rightarrow {B^\prime }{D^\prime } \bot AH} \right.\).
Do đó \(\widehat {AH{A^\prime }}\) là góc phẳng nhị diện \(\left[ {A,{B^\prime }{D^\prime },{A^\prime }} \right]\).
Tam giác \({A^\prime }{B^\prime }{D^\prime }\) vuông tại \({A^\prime }\) có đường cao \({A^\prime }H\) nên
\(\frac{1}{{{A^\prime }{H^2}}} = \frac{1}{{{A^\prime }{B^{\prime 2}}}} + \frac{1}{{{A^\prime }{D^{\prime 2}}}} \Rightarrow {A^\prime }H = \frac{{{A^\prime }{B^\prime } \cdot {A^\prime }{D^\prime }}}{{\sqrt {{A^\prime }{B^{\prime 2}} + {A^\prime }{D^{\prime 2}}} }} = \frac{{357}}{{2\sqrt {730} }}{\rm{. }}\)
Tam giác \(AH{A^\prime }\) vuông tại \({A^\prime }\) có:
\(\tan \widehat {AH{A^\prime }} = \frac{{A{A^\prime }}}{{{A^\prime }H}} = \frac{{8,2}}{{\frac{{357}}{{2\sqrt {730} }}}} \Rightarrow \widehat {AH{A^\prime }} \approx {51,14^^\circ }\)
Câu 2
a) \({\log _c}\left( {a + b} \right) > 1 + {\log _c}2\).
b) \({\log _{ab}}c > 0\).
c) \({\log _a}\frac{b}{c} > 0\).
Lời giải
|
a) Sai |
b) Sai |
c) Đúng |
d) Sai |
Từ hình vẽ ta có: *) \[a > 1\]. Vì hàm \[y = {\log _a}x\] đồng biến: Tính từ trái qua phải đồ thị có dạng đi lên.
*) Lấy đối xứng đồ thị hàm số \[y = - {b^x}\] qua trục \[Ox\]ta được đồ thị hàm số \[y = {b^x}\] là hàm đồng biến, nên \[\,b > 1\].
*) \[0 < c < 1.\]Vì hàm \[y = {c^x}\] nghịch biến: Tính từ trái qua phải đt có dạng đi xuống.
Do đó:
\[\left. \begin{array}{l}a + b > 2\\0 < c < 1\end{array} \right\} \Rightarrow {\log _c}\left( {a + b} \right) < {\log _c}2 \Rightarrow \]Đáp án a sai.
\[\left. \begin{array}{l}0 < c < 1\\ab > 1\end{array} \right\} \Rightarrow {\log _{ab}}c < {\log _{ab}}1 = 0 \Rightarrow \]Đáp án b sai.
\[\left. \begin{array}{l}\frac{b}{c} > 1\\a > 1\end{array} \right\} \Rightarrow {\log _a}\frac{b}{c} > {\log _a}1 = 0 \Rightarrow \]Đáp án c đúng.
\[\left. \begin{array}{l}\frac{a}{c} > 1\\b > 1\end{array} \right\} \Rightarrow {\log _b}\frac{a}{c} > {\log _b}1 = 0 \Rightarrow \]Đáp án d sai.
Câu 3
a) Phương trình tiếp tuyến của (C) tại điểm \[{\rm{M}}\left( { - {\rm{1}};{\rm{3}}} \right)\] là: \[y = - 3x + 6\]
b) Phương trình tiếp tuyến của (C) tại điểm có hoành độ bằng 2 là \[y = 24x - 27\]
c) Có 2 phương trình tiếp tuyến của (C) tại điểm có tung độ bằng 1
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \(D = \left( {0;\,4} \right)\).
B. \(D = \mathbb{R}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \[y = 18x - 49\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. \(45^\circ \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

