Câu hỏi:

12/12/2025 39 Lưu

Một cái hộp hình lập phương, bên trong nó đựng một mô hình đồ chơi có dạng hình chóp tứ giác đều mà đỉnh của hình chóp đó trùng với tâm của một mặt chiếc hộp, giả sử hình vuông đáy của hình chóp trùng với một mặt của chiếc hộp (mặt này cùng với mặt chứa đỉnh hình chóp là hai mặt đối nhau). Biết cạnh của chiếc hộp bằng \(30\;cm\), hãy tính thể tích phần không gian bên trong chiếc hộp không bị chiếm bởi mô hình đồ chơi dạng hình chóp (mô hình đồ chơi được làm bởi chất liệu nhựa đặc bên trong).

hãy tính thể tích phần không gian bên trong chiếc hộp không bị chiếm bởi mô hình đồ chơi dạng hình chóp (mô hình đồ chơi được làm bởi chất liệu nhựa đặc bên trong). (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Trả lời: \(18000\left( {\;c{m^3}} \right)\)

Lời giải

Thể tích cái hộp (khối lập phương) là: \({V_1} = {30^3} = 27000\left( {\;c{m^3}} \right)\).

Xét đồ chơi có dạng hình chóp tứ giác đều, chiều cao của hình chóp bằng với một cạnh của hình lập phương, hay \(h = 30\;cm\), đáy của hình chóp có diện tích \(S = {30^2} = 900\;c{m^2}\).

Thể tích khối đồ chơi (khối chóp tứ giác đều) là:

\({V_2} = \frac{1}{3}Sh = \frac{1}{3} \cdot 900 \cdot 30 = 9000\left( {\;c{m^3}} \right){\rm{. }}\)

Thể tích phần không gian bên trong chiếc hộp không bị chiếm bởi mô hình đồ chơi dạng hình chóp: \(V = {V_1} - {V_2} = 27000 - 9000 = 18000\left( {\;c{m^3}} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời: \( \approx {51,14^^\circ }\)

Trong mặt phẳng \(\left( {{A^\prime }{B^\prime }{C^\prime }{D^\prime }} \right)\), kẻ \({A^\prime }H \bot {B^\prime }{D^\prime }\) tại \(H\).

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{{B^\prime }{D^\prime } \bot {A^\prime }H}\\{{B^\prime }{D^\prime } \bot A{A^\prime }\left( {{\rm{do }}A{A^\prime } \bot \left( {{A^\prime }{B^\prime }{C^\prime }{D^\prime }} \right)} \right)}\end{array} \Rightarrow {B^\prime }{D^\prime } \bot \left( {A{A^\prime }H} \right) \Rightarrow {B^\prime }{D^\prime } \bot AH} \right.\).

Do đó \(\widehat {AH{A^\prime }}\) là góc phẳng nhị diện \(\left[ {A,{B^\prime }{D^\prime },{A^\prime }} \right]\).

 Một hộp phấn không bụi có dạng hình hộp chữ nhật, chiều cao hộp phấn bằng 8,2cm và đáy của nó có hai kích thước là 8,5cm;10,5cm (xem hình vẽ sau). Tìm góc phẳng nhị diện A,B'D'A' (tính theo độ, làm tròn kết quả đến hàng phần chục). (ảnh 2)

Tam giác \({A^\prime }{B^\prime }{D^\prime }\) vuông tại \({A^\prime }\) có đường cao \({A^\prime }H\) nên

\(\frac{1}{{{A^\prime }{H^2}}} = \frac{1}{{{A^\prime }{B^{\prime 2}}}} + \frac{1}{{{A^\prime }{D^{\prime 2}}}} \Rightarrow {A^\prime }H = \frac{{{A^\prime }{B^\prime } \cdot {A^\prime }{D^\prime }}}{{\sqrt {{A^\prime }{B^{\prime 2}} + {A^\prime }{D^{\prime 2}}} }} = \frac{{357}}{{2\sqrt {730} }}{\rm{. }}\)

Tam giác \(AH{A^\prime }\) vuông tại \({A^\prime }\) có:

\(\tan \widehat {AH{A^\prime }} = \frac{{A{A^\prime }}}{{{A^\prime }H}} = \frac{{8,2}}{{\frac{{357}}{{2\sqrt {730} }}}} \Rightarrow \widehat {AH{A^\prime }} \approx {51,14^^\circ }\)

Câu 2

a) \({\log _c}\left( {a + b} \right) > 1 + {\log _c}2\). 

Đúng
Sai

b) \({\log _{ab}}c > 0\).  

Đúng
Sai

c) \({\log _a}\frac{b}{c} > 0\). 

Đúng
Sai
d) \({\log _b}\frac{a}{c} < 0\).
Đúng
Sai

Lời giải

a) Sai

b) Sai

c) Đúng

d) Sai

Từ hình vẽ ta có: *) \[a > 1\]. Vì hàm \[y = {\log _a}x\] đồng biến: Tính từ trái qua phải đồ thị có dạng đi lên.

*) Lấy đối xứng đồ thị hàm số \[y =  - {b^x}\] qua trục \[Ox\]ta được đồ thị hàm số \[y = {b^x}\] là hàm đồng biến, nên \[\,b > 1\].

*) \[0 < c < 1.\]Vì hàm \[y = {c^x}\] nghịch biến: Tính từ trái qua phải đt có dạng đi xuống.

Do đó:

\[\left. \begin{array}{l}a + b > 2\\0 < c < 1\end{array} \right\} \Rightarrow {\log _c}\left( {a + b} \right) < {\log _c}2 \Rightarrow \]Đáp án a sai.

\[\left. \begin{array}{l}0 < c < 1\\ab > 1\end{array} \right\} \Rightarrow {\log _{ab}}c < {\log _{ab}}1 = 0 \Rightarrow \]Đáp án b sai.

\[\left. \begin{array}{l}\frac{b}{c} > 1\\a > 1\end{array} \right\} \Rightarrow {\log _a}\frac{b}{c} > {\log _a}1 = 0 \Rightarrow \]Đáp án c đúng.

\[\left. \begin{array}{l}\frac{a}{c} > 1\\b > 1\end{array} \right\} \Rightarrow {\log _b}\frac{a}{c} > {\log _b}1 = 0 \Rightarrow \]Đáp án d sai.

Câu 3

a) Phương trình tiếp tuyến của (C) tại điểm \[{\rm{M}}\left( { - {\rm{1}};{\rm{3}}} \right)\] là: \[y =  - 3x + 6\] 

Đúng
Sai

b) Phương trình tiếp tuyến của (C) tại điểm có hoành độ bằng 2 là \[y = 24x - 27\]

Đúng
Sai

c) Có 2 phương trình tiếp tuyến của (C) tại điểm có tung độ bằng 1  

Đúng
Sai
d) Có 2 phương trình tiếp tuyến của (C) tại giao điểm (C) với trục tung 
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(D = \left( {0;\,4} \right)\).  

B. \(D = \mathbb{R}\).

C. \(D = \left( { - \infty ;\,0} \right) \cup \left( {4;\, + \infty } \right)\) . 
D.\(D = \left( {0;\, + \infty } \right)\) .

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(45^\circ \).  

B. \(60^\circ \).  
C. \(30^\circ \). 
D. \(90^\circ \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP