Theo số liệu của tổng cục thống kê, dân số Việt Nam năm 2015 là \(91,7\) triệu người. Giả sử tỉ lệ tăng dân số hàng năm của Việt Nam trong giai đoạn 2015-2040 ở mức không đổi \(1,1\% \). Hỏi đến năm bao nhiêu dân số Việt Nam đạt mức \(113\) triệu người?
Theo số liệu của tổng cục thống kê, dân số Việt Nam năm 2015 là \(91,7\) triệu người. Giả sử tỉ lệ tăng dân số hàng năm của Việt Nam trong giai đoạn 2015-2040 ở mức không đổi \(1,1\% \). Hỏi đến năm bao nhiêu dân số Việt Nam đạt mức \(113\) triệu người?
Quảng cáo
Trả lời:
Trả lời: 2034
Lời giải
Giả sử sau \(n\) năm dân số Việt Nam là \({113.10^6}\) ( người).
\( \Rightarrow {113.10^6} = {91,7.10^6}.{\left( {1 + 1,1\% } \right)^n}\) \( \Leftrightarrow {\left( {1,01} \right)^n} = \frac{{1130}}{{917}} \Leftrightarrow n = {\log _{1,011}}\frac{{1130}}{{917}} = 19\)
Vậy đến năm 2034 thì dân số Việt Nam là \(113\) triệu người.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
a) \({\log _c}\left( {a + b} \right) > 1 + {\log _c}2\).
b) \({\log _{ab}}c > 0\).
c) \({\log _a}\frac{b}{c} > 0\).
Lời giải
|
a) Sai |
b) Sai |
c) Đúng |
d) Sai |
Từ hình vẽ ta có: *) \[a > 1\]. Vì hàm \[y = {\log _a}x\] đồng biến: Tính từ trái qua phải đồ thị có dạng đi lên.
*) Lấy đối xứng đồ thị hàm số \[y = - {b^x}\] qua trục \[Ox\]ta được đồ thị hàm số \[y = {b^x}\] là hàm đồng biến, nên \[\,b > 1\].
*) \[0 < c < 1.\]Vì hàm \[y = {c^x}\] nghịch biến: Tính từ trái qua phải đt có dạng đi xuống.
Do đó:
\[\left. \begin{array}{l}a + b > 2\\0 < c < 1\end{array} \right\} \Rightarrow {\log _c}\left( {a + b} \right) < {\log _c}2 \Rightarrow \]Đáp án a sai.
\[\left. \begin{array}{l}0 < c < 1\\ab > 1\end{array} \right\} \Rightarrow {\log _{ab}}c < {\log _{ab}}1 = 0 \Rightarrow \]Đáp án b sai.
\[\left. \begin{array}{l}\frac{b}{c} > 1\\a > 1\end{array} \right\} \Rightarrow {\log _a}\frac{b}{c} > {\log _a}1 = 0 \Rightarrow \]Đáp án c đúng.
\[\left. \begin{array}{l}\frac{a}{c} > 1\\b > 1\end{array} \right\} \Rightarrow {\log _b}\frac{a}{c} > {\log _b}1 = 0 \Rightarrow \]Đáp án d sai.
Câu 2
Lời giải
Áp dụng công thức thể tích của tam diện vuông ta có: \[V = \frac{1}{6}AB.AC.AD = \frac{1}{6}.2a.2a.3a = 2{a^3}\].
Câu 3
A. \[y = 18x - 49\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
a) \[SC \bot \left( {ABC} \right)\].
b) \[\left( {SAH} \right) \bot \left( {SBC} \right)\].
c) \[O \in SC\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \(\frac{{12a}}{7}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
a) Phương trình tiếp tuyến của (C) tại điểm \[{\rm{M}}\left( { - {\rm{1}};{\rm{3}}} \right)\] là: \[y = - 3x + 6\]
b) Phương trình tiếp tuyến của (C) tại điểm có hoành độ bằng 2 là \[y = 24x - 27\]
c) Có 2 phương trình tiếp tuyến của (C) tại điểm có tung độ bằng 1
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
