Câu hỏi:

12/12/2025 41 Lưu

Gọi \(M\left( {{x_0};{y_0}} \right)\) là điểm trên đồ thị hàm số \(y = {x^3} - 3{x^2} - 1\) mà tiếp tuyến tại đó có hệ số góc bé nhất trong các tiếp tuyến của đồ thị hàm số. Khi đó \(x_0^2 + y_0^2\) bằng bao nhiêu?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Trả lời: 10

Lời giải

Ta có \(y' = 3{x^2} - 6x\)

Suy ra hệ số góc \(k = 3x_0^2 - 6{x_0}\)

Ta có \(3x_0^2 - 6{x_0} \ge  - 3\) suy ra \({k_{\min }} =  - 3\) khi \({x_0} = 1\).

Từ đó suy ra \({y_0} =  - 3\)

Vậy \(x_0^2 + y_0^2 = {1^2} + {\left( { - 3} \right)^2} = 10\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời: \( \approx {51,14^^\circ }\)

Trong mặt phẳng \(\left( {{A^\prime }{B^\prime }{C^\prime }{D^\prime }} \right)\), kẻ \({A^\prime }H \bot {B^\prime }{D^\prime }\) tại \(H\).

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{{B^\prime }{D^\prime } \bot {A^\prime }H}\\{{B^\prime }{D^\prime } \bot A{A^\prime }\left( {{\rm{do }}A{A^\prime } \bot \left( {{A^\prime }{B^\prime }{C^\prime }{D^\prime }} \right)} \right)}\end{array} \Rightarrow {B^\prime }{D^\prime } \bot \left( {A{A^\prime }H} \right) \Rightarrow {B^\prime }{D^\prime } \bot AH} \right.\).

Do đó \(\widehat {AH{A^\prime }}\) là góc phẳng nhị diện \(\left[ {A,{B^\prime }{D^\prime },{A^\prime }} \right]\).

 Một hộp phấn không bụi có dạng hình hộp chữ nhật, chiều cao hộp phấn bằng 8,2cm và đáy của nó có hai kích thước là 8,5cm;10,5cm (xem hình vẽ sau). Tìm góc phẳng nhị diện A,B'D'A' (tính theo độ, làm tròn kết quả đến hàng phần chục). (ảnh 2)

Tam giác \({A^\prime }{B^\prime }{D^\prime }\) vuông tại \({A^\prime }\) có đường cao \({A^\prime }H\) nên

\(\frac{1}{{{A^\prime }{H^2}}} = \frac{1}{{{A^\prime }{B^{\prime 2}}}} + \frac{1}{{{A^\prime }{D^{\prime 2}}}} \Rightarrow {A^\prime }H = \frac{{{A^\prime }{B^\prime } \cdot {A^\prime }{D^\prime }}}{{\sqrt {{A^\prime }{B^{\prime 2}} + {A^\prime }{D^{\prime 2}}} }} = \frac{{357}}{{2\sqrt {730} }}{\rm{. }}\)

Tam giác \(AH{A^\prime }\) vuông tại \({A^\prime }\) có:

\(\tan \widehat {AH{A^\prime }} = \frac{{A{A^\prime }}}{{{A^\prime }H}} = \frac{{8,2}}{{\frac{{357}}{{2\sqrt {730} }}}} \Rightarrow \widehat {AH{A^\prime }} \approx {51,14^^\circ }\)

Câu 2

a) \({\log _c}\left( {a + b} \right) > 1 + {\log _c}2\). 

Đúng
Sai

b) \({\log _{ab}}c > 0\).  

Đúng
Sai

c) \({\log _a}\frac{b}{c} > 0\). 

Đúng
Sai
d) \({\log _b}\frac{a}{c} < 0\).
Đúng
Sai

Lời giải

a) Sai

b) Sai

c) Đúng

d) Sai

Từ hình vẽ ta có: *) \[a > 1\]. Vì hàm \[y = {\log _a}x\] đồng biến: Tính từ trái qua phải đồ thị có dạng đi lên.

*) Lấy đối xứng đồ thị hàm số \[y =  - {b^x}\] qua trục \[Ox\]ta được đồ thị hàm số \[y = {b^x}\] là hàm đồng biến, nên \[\,b > 1\].

*) \[0 < c < 1.\]Vì hàm \[y = {c^x}\] nghịch biến: Tính từ trái qua phải đt có dạng đi xuống.

Do đó:

\[\left. \begin{array}{l}a + b > 2\\0 < c < 1\end{array} \right\} \Rightarrow {\log _c}\left( {a + b} \right) < {\log _c}2 \Rightarrow \]Đáp án a sai.

\[\left. \begin{array}{l}0 < c < 1\\ab > 1\end{array} \right\} \Rightarrow {\log _{ab}}c < {\log _{ab}}1 = 0 \Rightarrow \]Đáp án b sai.

\[\left. \begin{array}{l}\frac{b}{c} > 1\\a > 1\end{array} \right\} \Rightarrow {\log _a}\frac{b}{c} > {\log _a}1 = 0 \Rightarrow \]Đáp án c đúng.

\[\left. \begin{array}{l}\frac{a}{c} > 1\\b > 1\end{array} \right\} \Rightarrow {\log _b}\frac{a}{c} > {\log _b}1 = 0 \Rightarrow \]Đáp án d sai.

Câu 3

a) Phương trình tiếp tuyến của (C) tại điểm \[{\rm{M}}\left( { - {\rm{1}};{\rm{3}}} \right)\] là: \[y =  - 3x + 6\] 

Đúng
Sai

b) Phương trình tiếp tuyến của (C) tại điểm có hoành độ bằng 2 là \[y = 24x - 27\]

Đúng
Sai

c) Có 2 phương trình tiếp tuyến của (C) tại điểm có tung độ bằng 1  

Đúng
Sai
d) Có 2 phương trình tiếp tuyến của (C) tại giao điểm (C) với trục tung 
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(D = \left( {0;\,4} \right)\).  

B. \(D = \mathbb{R}\).

C. \(D = \left( { - \infty ;\,0} \right) \cup \left( {4;\, + \infty } \right)\) . 
D.\(D = \left( {0;\, + \infty } \right)\) .

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(45^\circ \).  

B. \(60^\circ \).  
C. \(30^\circ \). 
D. \(90^\circ \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP