Câu hỏi:

12/12/2025 64 Lưu

Cho một vật chuyển động theo phương trình \(s\left( t \right) =  - {t^2} + 40t + 10\) trong đó \(s\)là quãng đường vật đi được (đơn vị \(m\)), \(t\) là thời gian chuyển động (đơn vị \(s\)). Tại thời điểm vật dừng lại thì vật đi được quãng đường bằng bao nhiêu?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Trả lời: \(410(m)\)

Lời giải

 Ta có phương trình vận tốc của vật: \(v\left\(v\left( t \right) = 0 \Leftrightarrow  - 2t + 40 = 0 \Leftrightarrow t = 20(s)\)( t \right) = s'\left( t \right) =  - 2t + 40\).

 Thời gian vật chuyển động cho đến khi dừng lại: .

 Quãng đường vật đi được là: \(s = s\left( {20} \right) = 410(m)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Sai

b) Đúng

c) Sai

d) Đúng

Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O, cạnh a, góc ABC = 60 độ , SO vuông góc (ABCD) và SO =3a/4, đặt x = d (O,(SAB), y = d (D, (SAB), z = d (CD,SA). Các mệnh đề sau đúng hay sai? (ảnh 1)

Tam giác \(ABC\) đều cạnh \(a\) nên đường cao \(CM = \frac{{a\sqrt 3 }}{2}\). Gọi \(N\) là trung điểm của \(AM\) \( \Rightarrow ON \bot AB;ON = \frac{{a\sqrt 3 }}{4}\).

Kẻ \(OH \bot SN\)\( \Rightarrow d\left( {O,\left( {SAB} \right)} \right) = OH\).

\[\frac{1}{{O{H^2}}} = \frac{1}{{S{O^2}}} + \frac{1}{{O{N^2}}}\]; \[ON = \frac{1}{2}CM = \frac{{a\sqrt 3 }}{4}\]; \[SO = \frac{{3a}}{4} \Rightarrow OH = \frac{{3a}}{8}\].

\(x = d\left( {O,\left( {SAB} \right)} \right) = \frac{{3a}}{8}\),

\(y = d\left( {D,\left( {SAB} \right)} \right) = 2.d\left( {O,\left( {SAB} \right)} \right) = 2x\),

\(z = d\left( {CD,SA} \right)\)\( = d\left( {D,\left( {SAB} \right)} \right) = 2x\).

Vậy \(x + y + z = 5x = \frac{{15a}}{8}\).

Lời giải

Trả lời: \( \approx {73,4^^\circ }\)

Lời giải

Cho hình hộp chữ nhật ABCD.A'B'C'D' có AB = a,AD = 2a,AA' = 3a. Tính góc phẳng nhị diện [A',BD,A]? (ảnh 1)

Kẻ \(AI \bot BD\). Mà \(BD \bot {A^\prime }A \Rightarrow BD \bot \left( {A{A^\prime }I} \right)\)

\(\begin{array}{l}{\rm{ Ta c\'o : }}\left\{ {\begin{array}{*{20}{l}}{\left( {{A^\prime }BD} \right) \cap (ABD) = BD}\\{{\mathop{\rm Trong}\nolimits} (ABD),AI \bot BD}\\{{\mathop{\rm Trong}\nolimits} \left( {{A^\prime }BD} \right),{A^\prime }I \bot BD}\end{array}} \right.\\ \Rightarrow \left[ {{A^\prime },BD,A} \right] = \widehat {{A^\prime }IA}\end{array}\)

Ta có: \(AI = \frac{1}{{\sqrt {\frac{1}{{A{B^2}}} + \frac{1}{{A{D^2}}}} }} = \frac{1}{{\sqrt {\frac{1}{{{a^2}}} + \frac{1}{{{{(2a)}^2}}}} }} = \frac{{2\sqrt 5 }}{5}a\)

Xét \(\Delta A{A^\prime }I\) vuông tại \(A:\tan \widehat {{A^\prime }IA} = \frac{{{A^\prime }A}}{{AI}} = \frac{{a\sqrt 3 }}{{\frac{{2\sqrt 5 }}{5}a}} = \frac{{3\sqrt 5 }}{2} \Rightarrow \widehat {{A^\prime }IA} \approx {73,4^^\circ }\)

Câu 3

a) Ta có \[\mathop {\lim }\limits_{x \to 1} \frac{{{x^2} - 1}}{{x - 1}} = 2\]

Đúng
Sai

b) Với \(a =  - 2\) thì hàm số có đạo hàm tại \[x = 1\]

Đúng
Sai

c) Với \(a = 2\) thì hàm số có đạo hàm tại \[x = 1\]

Đúng
Sai
d) Với \(a = {m_0}\) thì hàm số có đạo hàm tại \[x = 1\], khi đó : \(\mathop {\lim }\limits_{x \to {m_0}} \left( {{x^2} + 2x - 3} \right) = 5\)
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP