Câu hỏi:

15/12/2025 14 Lưu

Cho hình chóp \[S.ABC\] có đáy \[ABC\] là tam giác đều cạnh \[a\]. Biết \[SA = a\sqrt 2 \] \[SA\] vuông góc với mặt đáy. Gọi \(M\) là trung điểm của \(BC\)\(H\) là hình chiếu vuông góc của \(A\) lên \(SM\).

a) Đường thẳng \(AH\) vuông góc với mặt phẳng \(\left( {SBC} \right)\).
Đúng
Sai
b) Đường thẳng \(SH\) là hình chiếu của đường thẳng \(SA\) lên mặt phẳng \(\left( {SBC} \right)\)
Đúng
Sai
c) Độ dài đoạn thẳng \(AH\) bằng \(\frac{{6a}}{{11}}\)
Đúng
Sai
d) Cosin góc tạo bởi đường thẳng \[SA\] và mặt phẳng \[\left( {SBC} \right)\] bằng \(\frac{{\sqrt {11} }}{{33}}\)
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi \[M\] là trung điểm (ảnh 1)

Gọi \[M\] là trung điểm của \[BC\] và \[H\] là hình chiếu vuông góc của \[A\] lên \[SM\].

Ta có: \[AH \bot SM\].

Mặt khác \[BC \bot \left( {SAM} \right)\] nên \[BC \bot AH\]. Ta suy ra \[AH \bot \left( {SBC} \right)\].

Nên \[SH\] là hình chiếu của \[SA\] lên mặt phẳng \[\left( {SBC} \right)\].

Ta suy ra góc giữa đường thẳng \[SA\] và mặt phẳng \[\left( {SBC} \right)\] là góc \[\alpha  = \widehat {ASH}\].

Xét tam giác \[SAM\] vuông tại \[A\] ta có:\[\frac{1}{{A{H^2}}} = \frac{1}{{S{A^2}}} + \frac{1}{{A{M^2}}} = \frac{1}{{{{\left( {a\sqrt 2 } \right)}^2}}} + \frac{1}{{{{\left( {\frac{{a\sqrt 3 }}{2}} \right)}^2}}} = \frac{{11}}{{6{a^2}}}\]\[ \Rightarrow A{H^2} = \frac{{6{a^2}}}{{11}} \Rightarrow AH = \frac{{a\sqrt {66} }}{{11}}\].

Xét tam giác \[SAH\] vuông tại \[H\] ta có: \[\sin \widehat {ASH} = \frac{{AH}}{{SA}} = \frac{{\frac{{a\sqrt {66} }}{{11}}}}{{a\sqrt 2 }} = \frac{{\sqrt {33} }}{{11}}\].

a) Đúng: Đường thẳng \(AH\) vuông góc với mặt phẳng \(\left( {SBC} \right)\).

b) Đúng: Đường thẳng \(SH\) là hình chiếu của đường thẳng \(SA\) lên mặt phẳng \(\left( {SBC} \right)\)

c) Sai: Độ dài đoạn thẳng \(AH\) bằng \(\frac{{6a}}{{11}}\)

d) Sai: Cosin góc tạo bởi đường thẳng \[SA\] và mặt phẳng \[\left( {SBC} \right)\] bằng \(\frac{{\sqrt {33} }}{{11}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình chóp \(S.ABCD\) có đáy \( (ảnh 1)

Do \({S_{SAD}} = 3 = \frac{1}{2}.SA.AD \Rightarrow SA = \frac{6}{{2\sqrt 3 }} = \sqrt 3 \).

Mặt khác ta có \(d\left( {C,\left( {SBD} \right)} \right) = d\left( {A,\left( {SBD} \right)} \right)\).

Kẻ \(AH \bot BD\,\)tại \(H\), \(,AK \bot SH\) tại \(K\)\( \Rightarrow d\left( {A,\left( {SBD} \right)} \right) = AK\).

\(BD = \sqrt {A{B^2} + A{D^2}}  = \sqrt {13}  \Rightarrow AH = \frac{{AB.AD}}{{BD}} = \frac{{2\sqrt 3 }}{{\sqrt {13} }} = \frac{{2\sqrt {39} }}{{13}}\).

\( \Rightarrow AK = \frac{{SA.AH}}{{\sqrt {S{A^2} + A{H^2}} }} = \frac{{\sqrt 3 .\frac{{2\sqrt {39} }}{{13}}}}{{\sqrt {{{\left( {\sqrt 3 } \right)}^2} + {{\left( {\frac{{2\sqrt {39} }}{{13}}} \right)}^2}} }} = \frac{{2\sqrt {51} }}{{17}}\).

Vậy \(d\left( {C,\left( {SBD} \right)} \right) = d\left( {A,\left( {SBD} \right)} \right) = \frac{{2\sqrt {51} }}{{17}} \approx 0,84\).

Lời giải

Điều kiện \({5^x} - 1 > 0 \Leftrightarrow x > 0\).

Ta có \({\log _2}\left( {{5^x} - 1} \right) \le m \Leftrightarrow {5^x} - 1 \le {2^m}\).

Ta có \({5^x} - 1 \ge 4\) với mọi \(x \ge 1\).

Để bất phương trình có nghiệm \(x \ge 1\) thì  nên tổng các giá trị của tham số \(m\) bằng \(14\).

Câu 6

a) Nếu đặt \({\left( {\frac{3}{2}} \right)^x} = t\) thì phương trình đã cho trở thành \(9{t^2} - 13t + 4 = 0\).
Đúng
Sai
b) Phương trình đã cho có hai nghiệm, trong đó có một nghiệm nguyên âm.
Đúng
Sai
c) Tổng tất cả các nghiệm của phương trình đã cho bằng \(0\).
Đúng
Sai
d) Phương trình đã cho có hai nghiệm và đều là nghiệm nguyên dương.
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP