Câu hỏi:

15/12/2025 13 Lưu

Một người gửi ngân hàng 200 triệu đồng với kì hạn 1 tháng theo hình thức lãi kép, lãi suất \[0,58\% \] một tháng (kể từ tháng thứ hai trở đi, tiền lãi được tính theo phần trăm của tổng tiền gốc và tiền lãi tháng trước đó). Hỏi sau ít nhất bao nhiêu tháng thì người đó có tối thiểu 225 triệu đồng trong tài khoản tiết kiệm, biết rằng ngân hàng chỉ tính lãi khi đến kì hạn?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Theo hình thức lãi kép, tổng số tiền cả gốc lẫn lãi trong tài khoản của người đó sau \[n\] tháng là:

\[A = 200{\left( {1 + 0,58\% } \right)^n} = 200.1,{0058^n}\] (triệu đồng).

Theo đề bài \[A \ge 225 \Rightarrow 200.1,{0058^n} \ge 225 \Leftrightarrow 1,{0058^n} \ge \frac{9}{8}\]\[ \Leftrightarrow n \ge {\log _{1,0058}}\frac{9}{8} \approx 20,37\].

Vì ngân hàng chỉ tính lãi khi đến kì hạn nên phải sau ít nhất 21 tháng người đó mới có tối thiểu 225 triệu đồng trong tài khoản.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình chóp \(S.ABCD\) có đáy \( (ảnh 1)

Do \({S_{SAD}} = 3 = \frac{1}{2}.SA.AD \Rightarrow SA = \frac{6}{{2\sqrt 3 }} = \sqrt 3 \).

Mặt khác ta có \(d\left( {C,\left( {SBD} \right)} \right) = d\left( {A,\left( {SBD} \right)} \right)\).

Kẻ \(AH \bot BD\,\)tại \(H\), \(,AK \bot SH\) tại \(K\)\( \Rightarrow d\left( {A,\left( {SBD} \right)} \right) = AK\).

\(BD = \sqrt {A{B^2} + A{D^2}}  = \sqrt {13}  \Rightarrow AH = \frac{{AB.AD}}{{BD}} = \frac{{2\sqrt 3 }}{{\sqrt {13} }} = \frac{{2\sqrt {39} }}{{13}}\).

\( \Rightarrow AK = \frac{{SA.AH}}{{\sqrt {S{A^2} + A{H^2}} }} = \frac{{\sqrt 3 .\frac{{2\sqrt {39} }}{{13}}}}{{\sqrt {{{\left( {\sqrt 3 } \right)}^2} + {{\left( {\frac{{2\sqrt {39} }}{{13}}} \right)}^2}} }} = \frac{{2\sqrt {51} }}{{17}}\).

Vậy \(d\left( {C,\left( {SBD} \right)} \right) = d\left( {A,\left( {SBD} \right)} \right) = \frac{{2\sqrt {51} }}{{17}} \approx 0,84\).

Lời giải

Điều kiện \({5^x} - 1 > 0 \Leftrightarrow x > 0\).

Ta có \({\log _2}\left( {{5^x} - 1} \right) \le m \Leftrightarrow {5^x} - 1 \le {2^m}\).

Ta có \({5^x} - 1 \ge 4\) với mọi \(x \ge 1\).

Để bất phương trình có nghiệm \(x \ge 1\) thì  nên tổng các giá trị của tham số \(m\) bằng \(14\).

Câu 4

a) Đường thẳng \(AH\) vuông góc với mặt phẳng \(\left( {SBC} \right)\).
Đúng
Sai
b) Đường thẳng \(SH\) là hình chiếu của đường thẳng \(SA\) lên mặt phẳng \(\left( {SBC} \right)\)
Đúng
Sai
c) Độ dài đoạn thẳng \(AH\) bằng \(\frac{{6a}}{{11}}\)
Đúng
Sai
d) Cosin góc tạo bởi đường thẳng \[SA\] và mặt phẳng \[\left( {SBC} \right)\] bằng \(\frac{{\sqrt {11} }}{{33}}\)
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

a) Nếu đặt \({\left( {\frac{3}{2}} \right)^x} = t\) thì phương trình đã cho trở thành \(9{t^2} - 13t + 4 = 0\).
Đúng
Sai
b) Phương trình đã cho có hai nghiệm, trong đó có một nghiệm nguyên âm.
Đúng
Sai
c) Tổng tất cả các nghiệm của phương trình đã cho bằng \(0\).
Đúng
Sai
d) Phương trình đã cho có hai nghiệm và đều là nghiệm nguyên dương.
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP