Câu hỏi:

15/12/2025 15 Lưu

Tính tổng các giá trị nguyên của tham số \(m \in \left[ {0;\,5} \right]\) để bất phương trình \({\log _2}\left( {{5^x} - 1} \right) \le m\) có nghiệm \(x \ge 1\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Điều kiện \({5^x} - 1 > 0 \Leftrightarrow x > 0\).

Ta có \({\log _2}\left( {{5^x} - 1} \right) \le m \Leftrightarrow {5^x} - 1 \le {2^m}\).

Ta có \({5^x} - 1 \ge 4\) với mọi \(x \ge 1\).

Để bất phương trình có nghiệm \(x \ge 1\) thì  nên tổng các giá trị của tham số \(m\) bằng \(14\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình chóp \(S.ABCD\) có đáy \( (ảnh 1)

Do \({S_{SAD}} = 3 = \frac{1}{2}.SA.AD \Rightarrow SA = \frac{6}{{2\sqrt 3 }} = \sqrt 3 \).

Mặt khác ta có \(d\left( {C,\left( {SBD} \right)} \right) = d\left( {A,\left( {SBD} \right)} \right)\).

Kẻ \(AH \bot BD\,\)tại \(H\), \(,AK \bot SH\) tại \(K\)\( \Rightarrow d\left( {A,\left( {SBD} \right)} \right) = AK\).

\(BD = \sqrt {A{B^2} + A{D^2}}  = \sqrt {13}  \Rightarrow AH = \frac{{AB.AD}}{{BD}} = \frac{{2\sqrt 3 }}{{\sqrt {13} }} = \frac{{2\sqrt {39} }}{{13}}\).

\( \Rightarrow AK = \frac{{SA.AH}}{{\sqrt {S{A^2} + A{H^2}} }} = \frac{{\sqrt 3 .\frac{{2\sqrt {39} }}{{13}}}}{{\sqrt {{{\left( {\sqrt 3 } \right)}^2} + {{\left( {\frac{{2\sqrt {39} }}{{13}}} \right)}^2}} }} = \frac{{2\sqrt {51} }}{{17}}\).

Vậy \(d\left( {C,\left( {SBD} \right)} \right) = d\left( {A,\left( {SBD} \right)} \right) = \frac{{2\sqrt {51} }}{{17}} \approx 0,84\).

Lời giải

Cho hình chóp tứ giác đều \[S.ABCD\ (ảnh 1)

Gọi \[I\] là trung điểm \[SA\] thì \[IMNC\] là hình bình hành nên \[MN{\rm{ // }}IC\].

Ta có \[BD \bot \left( {SAC} \right)\]\[ \Rightarrow BD \bot IC\] mà \[MN{\rm{ // }}IC\]\[ \Rightarrow BD \bot MN\] nên góc giữa hai đường thẳng \[MN\] và \[BD\] bằng \[90^\circ \] hay \[\alpha  = 90^\circ  \Rightarrow \sin \alpha  = 1\]

Vậy \[\sin \alpha  = 1\].

Câu 3

a) Đường thẳng \(AH\) vuông góc với mặt phẳng \(\left( {SBC} \right)\).
Đúng
Sai
b) Đường thẳng \(SH\) là hình chiếu của đường thẳng \(SA\) lên mặt phẳng \(\left( {SBC} \right)\)
Đúng
Sai
c) Độ dài đoạn thẳng \(AH\) bằng \(\frac{{6a}}{{11}}\)
Đúng
Sai
d) Cosin góc tạo bởi đường thẳng \[SA\] và mặt phẳng \[\left( {SBC} \right)\] bằng \(\frac{{\sqrt {11} }}{{33}}\)
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

a) Nếu đặt \({\left( {\frac{3}{2}} \right)^x} = t\) thì phương trình đã cho trở thành \(9{t^2} - 13t + 4 = 0\).
Đúng
Sai
b) Phương trình đã cho có hai nghiệm, trong đó có một nghiệm nguyên âm.
Đúng
Sai
c) Tổng tất cả các nghiệm của phương trình đã cho bằng \(0\).
Đúng
Sai
d) Phương trình đã cho có hai nghiệm và đều là nghiệm nguyên dương.
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP