Câu hỏi:

15/12/2025 13 Lưu

PHẦN III. Câu trắc nghiệm trả lời ngắn. Thí sinh trả lời từ câu 1 đến câu 6.

Cho biết hai số thực dương \(a\) và \(b\) thỏa mãn \(\log _a^2\left( {ab} \right) = 4\); với \(b > 1 > a > 0\). Hỏi giá trị của biểu thức \(\log _a^3\left( {a{b^2}} \right)\) tương ứng bằng bao nhiêu?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Với \(b > 1 > a > 0\) ta có :

\[\log _a^2\left( {ab} \right) = 4 \Leftrightarrow {\left( {{{\log }_a}a + {{\log }_a}b} \right)^2} = 4 \Leftrightarrow {\left( {1 + {{\log }_a}b} \right)^2} = 4 \Leftrightarrow \left[ \begin{array}{l}1 + {\log _a}b = 2\\1 + {\log _a}b =  - 2\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}{\log _a}b = 1\\{\log _a}b =  - 3\end{array} \right.\]

Vì \(\left\{ \begin{array}{l}0 < a < 1\\b > 1\end{array} \right.\)nên \({\log _a}b =  - 3\).

Khi đó :\(\log _a^3\left( {a{b^2}} \right) = {\left( {{{\log }_a}a + 2{{\log }_a}b} \right)^3} = {\left( {1 + 2.\left( { - 3} \right)} \right)^3} =  - 125\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình chóp \(S.ABCD\) có đáy \( (ảnh 1)

Do \({S_{SAD}} = 3 = \frac{1}{2}.SA.AD \Rightarrow SA = \frac{6}{{2\sqrt 3 }} = \sqrt 3 \).

Mặt khác ta có \(d\left( {C,\left( {SBD} \right)} \right) = d\left( {A,\left( {SBD} \right)} \right)\).

Kẻ \(AH \bot BD\,\)tại \(H\), \(,AK \bot SH\) tại \(K\)\( \Rightarrow d\left( {A,\left( {SBD} \right)} \right) = AK\).

\(BD = \sqrt {A{B^2} + A{D^2}}  = \sqrt {13}  \Rightarrow AH = \frac{{AB.AD}}{{BD}} = \frac{{2\sqrt 3 }}{{\sqrt {13} }} = \frac{{2\sqrt {39} }}{{13}}\).

\( \Rightarrow AK = \frac{{SA.AH}}{{\sqrt {S{A^2} + A{H^2}} }} = \frac{{\sqrt 3 .\frac{{2\sqrt {39} }}{{13}}}}{{\sqrt {{{\left( {\sqrt 3 } \right)}^2} + {{\left( {\frac{{2\sqrt {39} }}{{13}}} \right)}^2}} }} = \frac{{2\sqrt {51} }}{{17}}\).

Vậy \(d\left( {C,\left( {SBD} \right)} \right) = d\left( {A,\left( {SBD} \right)} \right) = \frac{{2\sqrt {51} }}{{17}} \approx 0,84\).

Lời giải

Cho hình chóp tứ giác đều \[S.ABCD\ (ảnh 1)

Gọi \[I\] là trung điểm \[SA\] thì \[IMNC\] là hình bình hành nên \[MN{\rm{ // }}IC\].

Ta có \[BD \bot \left( {SAC} \right)\]\[ \Rightarrow BD \bot IC\] mà \[MN{\rm{ // }}IC\]\[ \Rightarrow BD \bot MN\] nên góc giữa hai đường thẳng \[MN\] và \[BD\] bằng \[90^\circ \] hay \[\alpha  = 90^\circ  \Rightarrow \sin \alpha  = 1\]

Vậy \[\sin \alpha  = 1\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

a) Nếu đặt \({\left( {\frac{3}{2}} \right)^x} = t\) thì phương trình đã cho trở thành \(9{t^2} - 13t + 4 = 0\).
Đúng
Sai
b) Phương trình đã cho có hai nghiệm, trong đó có một nghiệm nguyên âm.
Đúng
Sai
c) Tổng tất cả các nghiệm của phương trình đã cho bằng \(0\).
Đúng
Sai
d) Phương trình đã cho có hai nghiệm và đều là nghiệm nguyên dương.
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

a) Đường thẳng \(AH\) vuông góc với mặt phẳng \(\left( {SBC} \right)\).
Đúng
Sai
b) Đường thẳng \(SH\) là hình chiếu của đường thẳng \(SA\) lên mặt phẳng \(\left( {SBC} \right)\)
Đúng
Sai
c) Độ dài đoạn thẳng \(AH\) bằng \(\frac{{6a}}{{11}}\)
Đúng
Sai
d) Cosin góc tạo bởi đường thẳng \[SA\] và mặt phẳng \[\left( {SBC} \right)\] bằng \(\frac{{\sqrt {11} }}{{33}}\)
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP