Câu hỏi:

15/12/2025 120 Lưu

Cho hình chóp \(S.ABC\) có đáy là tam giác vuông cân tại \[B\], \(SA \bot \left( {ABC} \right)\), \[AB = BC = a\], \[SA = a\sqrt 3 \]. Tính góc giữa hai mặt phẳng \(\left( {SBC} \right)\)\(\left( {ABC} \right)\)?

a) Đường thẳng \(BC\) vuông góc với đường thẳng \(SB\).
Đúng
Sai
b) Góc tạo bởi hai đường thẳng \(SB\)\(AB\) bằng góc giữa hai mặt phẳng \(\left( {SBC} \right)\)\(\left( {ABC} \right)\).
Đúng
Sai
c) Cosin góc tạo bởi hai đường thẳng \(SB\)\(AB\) bằng \(\frac{{\sqrt 3 }}{2}\)
Đúng
Sai
d) Góc giữa hai mặt phẳng \(\left( {SBC} \right)\)\(\left( {ABC} \right)\) bằng \({45^0}\).
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Điều kiện: \[x >  - 1.\]  Ta có:\[\log _2^2\left( {x + 1} \ (ảnh 1)

Ta có: \[\left\{ \begin{array}{l}SA \bot BC\,\,\,\,\,\left( {do\;SA \bot \left( {ABC} \right)} \right)\\AB \bot BC\,\,\,\,\left( {gt} \right)\end{array} \right. \Rightarrow BC \bot \left( {SAB} \right) \Rightarrow BC \bot SB\]

Xét 2 mặt phẳng \(\left( {SBC} \right)\) và \(\left( {ABC} \right)\) ta có: \[\left\{ \begin{array}{l}\left( {SBC} \right) \cap \left( {ABC} \right) = BC\\SB \bot BC,\,SB \subset \left( {SBC} \right)\\AB \bot BC,\,AB \subset \left( {ABC} \right)\\SB \cap AB = \left\{ B \right\}\end{array} \right.\].

\[ \Rightarrow \left( {\widehat {\left( {SBA} \right);\left( {ABC} \right)}} \right) = \left( {\widehat {SB,AB}} \right) = \widehat {SBA}\]

Xét \(SAB\) tam giác vuông tại \(A\), có \[\tan \widehat {SBA} = \frac{{SA}}{{AB}} = \sqrt 3  \Rightarrow \widehat {SBA} = {60^0}\].

a) Đúng: Đường thẳng \(BC\) vuông góc với đường thẳng \(SB\).

b) Đúng: Góc tạo bởi hai đường thẳng \(SB\) và \(AB\) bằng góc giữa hai mặt phẳng \(\left( {SBC} \right)\) và \(\left( {ABC} \right)\)

c) Sai: Cosin góc tạo bởi hai đường thẳng \(SB\) và \(AB\) bằng \(\frac{{\sqrt 3 }}{2}\)

d) Sai: Góc giữa hai mặt phẳng \(\left( {SBC} \right)\) và \(\left( {ABC} \right)\) bằng \({45^0}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Vì sau \(3\) phút thì số lư (ảnh 1)

Gọi \[\alpha  = \widehat {\left( {SB,AC} \right)}\]. Do \[A{B^2} + A{C^2} = B{C^2}\] nên tam giác \[ABC\] vuông tại \[A\].

Ta có \[\cos \alpha  = \frac{{\left| {\overrightarrow {SB} .\overrightarrow {AC} } \right|}}{{\left| {\overrightarrow {SB} } \right|.\left| {\overrightarrow {AC} } \right|}} = \frac{{\left| {\left( {\overrightarrow {AB}  - \overrightarrow {AS} } \right).\overrightarrow {AC} } \right|}}{{{a^2}}} = \frac{{\left| {\overrightarrow {AB} .\overrightarrow {AC}  - \overrightarrow {AS} .\overrightarrow {AC} } \right|}}{{{a^2}}} = \frac{{\left| {\overrightarrow {AS} .\overrightarrow {AC} } \right|}}{{{a^2}}}\]

\[ = \frac{{\left| {SA.AC.cos{{60}^0}} \right|}}{{{a^2}}} = \cos {60^0}\]. Khi đó \[\alpha  = \widehat {\left( {SB,AC} \right)} = {60^0}\]

Lời giải

Hàm số \[y = {\left( {{x^2} - 2x - m + 1} \right)^{\sqrt 7 }}\] có tập xác định là \[\mathbb{R}\]\[ \Leftrightarrow {x^2} - 2x - m + 1 > 0,\forall x \in \mathbb{R}\]

\[ \Leftrightarrow m < {\left( {x + 1} \right)^2},\forall x \in \mathbb{R} \Leftrightarrow m < \mathop {\min }\limits_{x \in \mathbb{R}} {\left( {x + 1} \right)^2} \Leftrightarrow m < 0\]

Mà \[\left\{ \begin{array}{l}m \in \mathbb{Z}\\m \in \left( { - 2024;2024} \right)\end{array} \right. \Rightarrow \left\{ \begin{array}{l}m \in \mathbb{Z}\\m \in \left( { - 2024;0} \right)\end{array} \right.\] nên có 2023 giá trị \[m\] thỏa mãn yêu cầu.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. 6.                           
B. 81.                       
C. 9.                               
D. 3.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

a) Điều kiện xác định của phương trình là \(x > - 1\).
Đúng
Sai
b) Nếu đặt \(t = {\log _2}\left( {x + 1} \right)\) thì phương trình đã cho trở thành \({t^2} - 6t + 2 = 0\).
Đúng
Sai
c) Phương trình đã cho có hai nghiệm nguyên dương.
Đúng
Sai
d) Tổng các nghiệm của phương trình đã cho bằng \(6\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\tan \varphi = \sqrt 7 \).                   
B. \(\varphi = {60^0}\).                
C. \(\varphi = {45^0}\).                    
D. \(\cos \varphi = \frac{{\sqrt 2 }}{3}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP