Câu hỏi:

15/12/2025 20 Lưu

Tìm số nghiệm nguyên của bất phương trình \({\log _{2 - \sqrt 3 }}\left( {x - 1} \right) + {\log _{2 + \sqrt 3 }}\left( {11 - 2x} \right) \ge 0\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Điều kiện \(1 < x < \frac{{11}}{2}\).

Ta có \({\log _{2 - \sqrt 3 }}\left( {x - 1} \right) + {\log _{2 + \sqrt 3 }}\left( {11 - 2x} \right) \ge 0\)

\(\begin{array}{l} \Leftrightarrow {\log _{2 - \sqrt 3 }}\left( {x - 1} \right) + {\log _{2 - \sqrt 3 }}\frac{1}{{11 - 2x}} \ge 0 \Leftrightarrow {\log _{2 - \sqrt 3 }}\left( {\frac{{x - 1}}{{11 - 2x}}} \right) \ge 0 \Leftrightarrow \frac{{x - 1}}{{11 - 2x}} \le 1\\ \Leftrightarrow \frac{{3x - 12}}{{11 - 2x}} \le 0 \Leftrightarrow \left[ \begin{array}{l}x \le 4\\x > \frac{{11}}{2}\end{array} \right.\end{array}\)

Kết hợp điều kiện suy ra \(1 < x \le 4\)

Vậy bất phương trình có 3 nghiệm nguyên.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Vì sau \(3\) phút thì số lư (ảnh 1)

Gọi \[\alpha  = \widehat {\left( {SB,AC} \right)}\]. Do \[A{B^2} + A{C^2} = B{C^2}\] nên tam giác \[ABC\] vuông tại \[A\].

Ta có \[\cos \alpha  = \frac{{\left| {\overrightarrow {SB} .\overrightarrow {AC} } \right|}}{{\left| {\overrightarrow {SB} } \right|.\left| {\overrightarrow {AC} } \right|}} = \frac{{\left| {\left( {\overrightarrow {AB}  - \overrightarrow {AS} } \right).\overrightarrow {AC} } \right|}}{{{a^2}}} = \frac{{\left| {\overrightarrow {AB} .\overrightarrow {AC}  - \overrightarrow {AS} .\overrightarrow {AC} } \right|}}{{{a^2}}} = \frac{{\left| {\overrightarrow {AS} .\overrightarrow {AC} } \right|}}{{{a^2}}}\]

\[ = \frac{{\left| {SA.AC.cos{{60}^0}} \right|}}{{{a^2}}} = \cos {60^0}\]. Khi đó \[\alpha  = \widehat {\left( {SB,AC} \right)} = {60^0}\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

a) Đường thẳng \(BC\) vuông góc với đường thẳng \(SB\).
Đúng
Sai
b) Góc tạo bởi hai đường thẳng \(SB\)\(AB\) bằng góc giữa hai mặt phẳng \(\left( {SBC} \right)\)\(\left( {ABC} \right)\).
Đúng
Sai
c) Cosin góc tạo bởi hai đường thẳng \(SB\)\(AB\) bằng \(\frac{{\sqrt 3 }}{2}\)
Đúng
Sai
d) Góc giữa hai mặt phẳng \(\left( {SBC} \right)\)\(\left( {ABC} \right)\) bằng \({45^0}\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP