Tìm số nghiệm nguyên của bất phương trình \({\log _{2 - \sqrt 3 }}\left( {x - 1} \right) + {\log _{2 + \sqrt 3 }}\left( {11 - 2x} \right) \ge 0\).
Tìm số nghiệm nguyên của bất phương trình \({\log _{2 - \sqrt 3 }}\left( {x - 1} \right) + {\log _{2 + \sqrt 3 }}\left( {11 - 2x} \right) \ge 0\).
Quảng cáo
Trả lời:
Điều kiện \(1 < x < \frac{{11}}{2}\).
Ta có \({\log _{2 - \sqrt 3 }}\left( {x - 1} \right) + {\log _{2 + \sqrt 3 }}\left( {11 - 2x} \right) \ge 0\)
\(\begin{array}{l} \Leftrightarrow {\log _{2 - \sqrt 3 }}\left( {x - 1} \right) + {\log _{2 - \sqrt 3 }}\frac{1}{{11 - 2x}} \ge 0 \Leftrightarrow {\log _{2 - \sqrt 3 }}\left( {\frac{{x - 1}}{{11 - 2x}}} \right) \ge 0 \Leftrightarrow \frac{{x - 1}}{{11 - 2x}} \le 1\\ \Leftrightarrow \frac{{3x - 12}}{{11 - 2x}} \le 0 \Leftrightarrow \left[ \begin{array}{l}x \le 4\\x > \frac{{11}}{2}\end{array} \right.\end{array}\)
Kết hợp điều kiện suy ra \(1 < x \le 4\)
Vậy bất phương trình có 3 nghiệm nguyên.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Vì sau \(3\) phút thì số lượng vi khuẩn \(A\) là \(625\) nghìn con
Khi đó ta có: \(625000 = S\left( 0 \right){.2^3} \Leftrightarrow S\left( 0 \right) = 78125\)con.
Thời gian để số lượng vi khuẩn \(A\) là \(10\) triệu con là: \(10000000 = {78125.2^t} \Leftrightarrow t = 7\)phút.
Lời giải

Gọi \[\alpha = \widehat {\left( {SB,AC} \right)}\]. Do \[A{B^2} + A{C^2} = B{C^2}\] nên tam giác \[ABC\] vuông tại \[A\].
Ta có \[\cos \alpha = \frac{{\left| {\overrightarrow {SB} .\overrightarrow {AC} } \right|}}{{\left| {\overrightarrow {SB} } \right|.\left| {\overrightarrow {AC} } \right|}} = \frac{{\left| {\left( {\overrightarrow {AB} - \overrightarrow {AS} } \right).\overrightarrow {AC} } \right|}}{{{a^2}}} = \frac{{\left| {\overrightarrow {AB} .\overrightarrow {AC} - \overrightarrow {AS} .\overrightarrow {AC} } \right|}}{{{a^2}}} = \frac{{\left| {\overrightarrow {AS} .\overrightarrow {AC} } \right|}}{{{a^2}}}\]
\[ = \frac{{\left| {SA.AC.cos{{60}^0}} \right|}}{{{a^2}}} = \cos {60^0}\]. Khi đó \[\alpha = \widehat {\left( {SB,AC} \right)} = {60^0}\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.