PHẦN III. Câu trắc nghiệm trả lời ngắn. Thí sinh trả lời từ câu 1 đến câu 6.
Có bao nhiêu giá trị nguyên của tham số \[m \in \left( { - 2024;2024} \right)\] để hàm số \[y = {\left( {{x^2} - 2x - m + 1} \right)^{\sqrt 7 }}\] có tập xác định là \[\mathbb{R}\]?
PHẦN III. Câu trắc nghiệm trả lời ngắn. Thí sinh trả lời từ câu 1 đến câu 6.
Có bao nhiêu giá trị nguyên của tham số \[m \in \left( { - 2024;2024} \right)\] để hàm số \[y = {\left( {{x^2} - 2x - m + 1} \right)^{\sqrt 7 }}\] có tập xác định là \[\mathbb{R}\]?Quảng cáo
Trả lời:
Hàm số \[y = {\left( {{x^2} - 2x - m + 1} \right)^{\sqrt 7 }}\] có tập xác định là \[\mathbb{R}\]\[ \Leftrightarrow {x^2} - 2x - m + 1 > 0,\forall x \in \mathbb{R}\]
\[ \Leftrightarrow m < {\left( {x + 1} \right)^2},\forall x \in \mathbb{R} \Leftrightarrow m < \mathop {\min }\limits_{x \in \mathbb{R}} {\left( {x + 1} \right)^2} \Leftrightarrow m < 0\]
Mà \[\left\{ \begin{array}{l}m \in \mathbb{Z}\\m \in \left( { - 2024;2024} \right)\end{array} \right. \Rightarrow \left\{ \begin{array}{l}m \in \mathbb{Z}\\m \in \left( { - 2024;0} \right)\end{array} \right.\] nên có 2023 giá trị \[m\] thỏa mãn yêu cầu.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Gọi \[\alpha = \widehat {\left( {SB,AC} \right)}\]. Do \[A{B^2} + A{C^2} = B{C^2}\] nên tam giác \[ABC\] vuông tại \[A\].
Ta có \[\cos \alpha = \frac{{\left| {\overrightarrow {SB} .\overrightarrow {AC} } \right|}}{{\left| {\overrightarrow {SB} } \right|.\left| {\overrightarrow {AC} } \right|}} = \frac{{\left| {\left( {\overrightarrow {AB} - \overrightarrow {AS} } \right).\overrightarrow {AC} } \right|}}{{{a^2}}} = \frac{{\left| {\overrightarrow {AB} .\overrightarrow {AC} - \overrightarrow {AS} .\overrightarrow {AC} } \right|}}{{{a^2}}} = \frac{{\left| {\overrightarrow {AS} .\overrightarrow {AC} } \right|}}{{{a^2}}}\]
\[ = \frac{{\left| {SA.AC.cos{{60}^0}} \right|}}{{{a^2}}} = \cos {60^0}\]. Khi đó \[\alpha = \widehat {\left( {SB,AC} \right)} = {60^0}\]
Lời giải

Ta có diện tích đáy \({S_{ABCD}} = 2{S_{\Delta ACD}} = \frac{{9\sqrt 3 }}{2}\).
Gọi \(H\) là trung điểm \(AB \Rightarrow SH \bot AB\), vì \(\left\{ \begin{array}{l}\left( {SAB} \right) \bot \left( {ABCD} \right)\\\left( {SAB} \right) \cap \left( {ABCD} \right) = AB\end{array} \right. \Rightarrow SH \bot \left( {ABCD} \right)\).
Ta có \(\left\{ \begin{array}{l}AB \bot SH\\AB \bot CH\,\,(do\,AB = BC = CA)\end{array} \right. \Rightarrow AB \bot \left( {SHC} \right)\), vì \(CD//AB \Rightarrow CD \bot \left( {SHC} \right)\).
Lại có \(\left\{ \begin{array}{l}\left( {SCD} \right) \cap \left( {ABCD} \right) = CD\\SC \bot CD,\,SC \subset \left( {SCD} \right)\,\\HC \bot CD,\,HC \subset \left( {ABCD} \right)\end{array} \right.\)suy ra góc giữa \(\left( {SCD} \right)\) và \(\left( {ABCD} \right)\) là góc \(\widehat {SCH}\).
Suy ra \(\Delta SHC\) vuông cân tại \(H\)\( \Rightarrow SH = CH = \frac{{3\sqrt 3 }}{2}\).
Vậy \[V = \frac{1}{3}{S_{ABCD}}.SH = \frac{1}{3}.\frac{{9\sqrt 3 }}{2}.\frac{{3\sqrt 3 }}{2} = \frac{{{a^3}}}{4} = \frac{{27}}{4} = 6,75\] (đơn vị thể tích).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.