Câu hỏi:

15/12/2025 162 Lưu

PHẦN III. Câu trắc nghiệm trả lời ngắn. Thí sinh trả lời từ câu 1 đến câu 6.

Có bao nhiêu giá trị nguyên của tham số \[m \in \left( { - 2024;2024} \right)\] để hàm số \[y = {\left( {{x^2} - 2x - m + 1} \right)^{\sqrt 7 }}\] có tập xác định là \[\mathbb{R}\]?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hàm số \[y = {\left( {{x^2} - 2x - m + 1} \right)^{\sqrt 7 }}\] có tập xác định là \[\mathbb{R}\]\[ \Leftrightarrow {x^2} - 2x - m + 1 > 0,\forall x \in \mathbb{R}\]

\[ \Leftrightarrow m < {\left( {x + 1} \right)^2},\forall x \in \mathbb{R} \Leftrightarrow m < \mathop {\min }\limits_{x \in \mathbb{R}} {\left( {x + 1} \right)^2} \Leftrightarrow m < 0\]

Mà \[\left\{ \begin{array}{l}m \in \mathbb{Z}\\m \in \left( { - 2024;2024} \right)\end{array} \right. \Rightarrow \left\{ \begin{array}{l}m \in \mathbb{Z}\\m \in \left( { - 2024;0} \right)\end{array} \right.\] nên có 2023 giá trị \[m\] thỏa mãn yêu cầu.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Vì sau \(3\) phút thì số lư (ảnh 1)

Gọi \[\alpha  = \widehat {\left( {SB,AC} \right)}\]. Do \[A{B^2} + A{C^2} = B{C^2}\] nên tam giác \[ABC\] vuông tại \[A\].

Ta có \[\cos \alpha  = \frac{{\left| {\overrightarrow {SB} .\overrightarrow {AC} } \right|}}{{\left| {\overrightarrow {SB} } \right|.\left| {\overrightarrow {AC} } \right|}} = \frac{{\left| {\left( {\overrightarrow {AB}  - \overrightarrow {AS} } \right).\overrightarrow {AC} } \right|}}{{{a^2}}} = \frac{{\left| {\overrightarrow {AB} .\overrightarrow {AC}  - \overrightarrow {AS} .\overrightarrow {AC} } \right|}}{{{a^2}}} = \frac{{\left| {\overrightarrow {AS} .\overrightarrow {AC} } \right|}}{{{a^2}}}\]

\[ = \frac{{\left| {SA.AC.cos{{60}^0}} \right|}}{{{a^2}}} = \cos {60^0}\]. Khi đó \[\alpha  = \widehat {\left( {SB,AC} \right)} = {60^0}\]

Lời giải

Cho hình chóp \(S.ABCD\) có đáy \(ABC (ảnh 1)

Ta có diện tích đáy \({S_{ABCD}} = 2{S_{\Delta ACD}} = \frac{{9\sqrt 3 }}{2}\).

Gọi \(H\) là trung điểm \(AB \Rightarrow SH \bot AB\), vì \(\left\{ \begin{array}{l}\left( {SAB} \right) \bot \left( {ABCD} \right)\\\left( {SAB} \right) \cap \left( {ABCD} \right) = AB\end{array} \right. \Rightarrow SH \bot \left( {ABCD} \right)\).

Ta có \(\left\{ \begin{array}{l}AB \bot SH\\AB \bot CH\,\,(do\,AB = BC = CA)\end{array} \right. \Rightarrow AB \bot \left( {SHC} \right)\), vì \(CD//AB \Rightarrow CD \bot \left( {SHC} \right)\).

Lại có \(\left\{ \begin{array}{l}\left( {SCD} \right) \cap \left( {ABCD} \right) = CD\\SC \bot CD,\,SC \subset \left( {SCD} \right)\,\\HC \bot CD,\,HC \subset \left( {ABCD} \right)\end{array} \right.\)suy ra góc giữa \(\left( {SCD} \right)\) và \(\left( {ABCD} \right)\) là góc \(\widehat {SCH}\).

Suy ra \(\Delta SHC\) vuông cân tại \(H\)\( \Rightarrow SH = CH = \frac{{3\sqrt 3 }}{2}\).

Vậy \[V = \frac{1}{3}{S_{ABCD}}.SH = \frac{1}{3}.\frac{{9\sqrt 3 }}{2}.\frac{{3\sqrt 3 }}{2} = \frac{{{a^3}}}{4} = \frac{{27}}{4} = 6,75\] (đơn vị thể tích).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\tan \varphi = \sqrt 7 \).                   
B. \(\varphi = {60^0}\).                
C. \(\varphi = {45^0}\).                    
D. \(\cos \varphi = \frac{{\sqrt 2 }}{3}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. 6.                           
B. 81.                       
C. 9.                               
D. 3.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP