Cho khối lăng trụ tam giác đều \(ABC.A'B'C'\) có cạnh đáy bằng \(2a\) và chiều cao bằng \(a\). Tính số đo góc tạo bởi hai mặt phẳng \(\left( {AB'C'} \right)\) và \(\left( {ABC} \right)\)?
Quảng cáo
Trả lời:

Gọi \(H\) là trung điểm của \(B'C'\), do các tam giác \(\Delta A'B'C',\,\,\Delta AB'C'\) lần lượt cân đỉnh \(A'\) và \(A\) nên \(AH \bot B'C'\), \(A'H' \bot B'C'\)
Suy ra: \(\widehat {\left( {\left( {AB'C'} \right),\left( {ABC} \right)} \right)} = \widehat {\left( {\left( {AB'C'} \right),\left( {A'B'C'} \right)} \right)} = \widehat {\left( {AH,A'H} \right)} = \widehat {AHA'}\)
Xét tam giác:\[AHA'\] có \(\widehat {A'} = {90^0},A'H = a\sqrt 3 \) và \(\tan \widehat {AHA'} = \frac{{AA'}}{{A'H}} = \frac{1}{{\sqrt 3 }}\) \( \Rightarrow \widehat {AHA'} = {30^0}\).
Vậy số đo góc tạo bởi hai mặt phẳng \(\left( {AB'C'} \right)\) và \(\left( {ABC} \right)\) bằng \({30^0}\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
a) Đúng: Hàm số \(y = {\log _{\frac{{2024}}{{2023}}}}x\) có tập giá trị là \(\mathbb{R}\).
b) Sai: Vì cơ số \(\frac{{2023}}{{2024}} \in \left( {0\,;\,1} \right)\) nên hàm số \(y = {\left( {\frac{{2023}}{{2024}}} \right)^x}\) nghịch biến trên \(\mathbb{R}\).
c) Đúng: Hàm số \(y = {\log _{\frac{{2024}}{{2023}}}}x\) có tập xác định là \(\left( {0\,;\, + \infty } \right)\) nên có đồ thị nằm bên phải trục tung.
d) Sai: Vì \({\left( {\frac{{2023}}{{2024}}} \right)^x} > 0,\,\forall x \in \mathbb{R}\) nên đồ thị hàm số \(y = {\left( {\frac{{2023}}{{2024}}} \right)^x}\) không cắt trục tung.
Câu 2
Lời giải
Chọn B
Ta thấy đồ thị \(y = {x^c}\)đi xuống nên \(c < 0\), đồ thị \(y = {a^x}\)đi xuống nên \(0 < a < 1\), đồ thị \(y = {\log _b}x\) đi lên nên \(b > 1.\)
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
