Câu hỏi:

15/12/2025 15 Lưu

Cho hình chóp \[S.ABCD\] có đáy là hình vuông cạnh \[a\]. \[SA\] vuông góc với mặt phẳng \[\left( {ABCD} \right)\] và \[SA = a\sqrt 6 \] (hình vẽ). Gọi \[\alpha \] là góc giữa đường thẳng \[SB\] và mặt phẳng \[\left( {SAC} \right)\]. Tính \[\sin \alpha \] ta được kết quả là:
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a. SA vuông góc với mặt phẳng (ABCD) và SA = a căn bậc hai 6 (hình vẽ). Gọi alpha là góc giữa đường thẳng SB và mặt phẳng (SAC). Tính sin alpha ta được kết quả là: (ảnh 1)

A. \[\frac{1}{{\sqrt {14} }}\]. 

B. \[\frac{{\sqrt 2 }}{2}\].
C. \[\frac{{\sqrt 3 }}{2}\].   
D. \[\frac{1}{5}\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a. SA vuông góc với mặt phẳng (ABCD) và SA = a căn bậc hai 6 (hình vẽ). Gọi alpha là góc giữa đường thẳng SB và mặt phẳng (SAC). Tính sin alpha ta được kết quả là: (ảnh 2)

Gọi \[O\] là tâm hình vuông \[ABCD\] thì \[BO \bot \left( {SAC} \right)\]\[ \Rightarrow \alpha  = \widehat {\left( {SB,\left( {SAC} \right)} \right)}\]\[ = \widehat {BSO}\].

Ta có \[SB = a\sqrt 7 \], \[\sin \alpha  = \frac{{BO}}{{SB}}\]\[ = \frac{{\frac{{a\sqrt 2 }}{2}}}{{a\sqrt 7 }}\]\[ = \frac{1}{{\sqrt {14} }}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(90^\circ \).  

B. \(60^\circ \). 
C. \(30^\circ \). 
D. \(45^\circ \).

Lời giải

Cho hình lập phương ABCD.A'B'C'D', góc giữa hai đường thẳng A'B và B'C là (ảnh 1)

Ta có \(B'C\;{\rm{//}}\;A'D\)\( \Rightarrow \widehat {\left( {A'B;B'C} \right)} = \widehat {\left( {A'B;A'D} \right)}\)\( = \widehat {DA'B}\).

Xét \(\Delta DA'B\) có \(A'D = A'B\)\( = BD\) nên \(\Delta DA'B\) là tam giác đều.

Vậy \(\widehat {DA'B}\)\( = 60^\circ \).

Câu 2

a) \[f'\left( x \right) = {x^2} + x - 2\]

Đúng
Sai

b) \[f'\left( x \right) = 0\] có 1 nghiệm

Đúng
Sai

c) \[f'\left( x \right) =  - 2\] có 2 nghiệm

Đúng
Sai
d) \[f'\left( x \right) = 10\] có 1 nghiệm
Đúng
Sai

Lời giải

a) Đúng

b) Sai

c) Đúng

d) Sai

a) Ta có \[f'\left( x \right) = \left( {\frac{{{x^3}}}{3} + \frac{{{x^2}}}{2} - 2x} \right) = {x^2} + x - 2\]

b) \[f'\left( x \right) = 0 \Leftrightarrow {x^2} + x - 2 = 0 \Leftrightarrow x = 1 \vee x =  - 2\]

c) \[f'\left( x \right) =  - 2 \Leftrightarrow {x^2} + x - 2 =  - 2 \Leftrightarrow {x^2} + x = 0 \Leftrightarrow x = 0 \vee x =  - 1\]

d) \[f'\left( x \right) = 10 \Leftrightarrow {x^2} + x - 2 = 10 \Leftrightarrow {x^2} + x - 12 = 0 \Leftrightarrow x = 3 \vee x =  - 4\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Phần 3. Câu trả lời ngắn.

Thí sinh trả lời đáp án từ câu 1 đến câu 6.

Khi tung một đồng xu không cân đối thì người ta thấy rằng xác suất để đồng xu xuất hiện mặt sấp bằng \(\frac{2}{3}\). Tung đồng xu này ba lần liên tiếp. Tính xác suất để chỉ xuất hiện mặt sấp;

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(P(A) - P(B)\). 

B. \(P(A) + P(B)\). 

C. \(P(A) \cdot P(B)\).  
D. \([1 - P(A)][1 - P(B)]\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP