Câu hỏi:

15/12/2025 13 Lưu

Cho hình chóp \(S.ABC\) có đáy là tam giác đều cạnh \(a,SA \bot (ABC)\) và \(SB = a\sqrt 5 \). Gọi \(M\) là trung điểm \(BC\). Tính góc giữa đường thẳng \(SM\) và mặt phẳng \((SAC)\)?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Trả lời: \( \approx {11,5^0}\)

Lời giải

Cho hình chóp S.ABC có đáy là tam giác đều cạnh a,SA vuông góc (ABC) và SB = a căn bậc hai của 5. Gọi M là trung điểm BC. Tính góc giữa đường thẳng SM và mặt phẳng (SAC)? (ảnh 1)

Kẻ \(MH \bot AC\)

Ta có: \(MH \bot SA \Rightarrow MH \bot (SAC)\) tại \(H\) và \(SM\) cắt mp \((SAC)\) tại \(S\)

\( \Rightarrow SH\) là hình chiếu của \(SM\) trên mp \((SAC)\)

\( \Rightarrow (SM,(SAC)) = (SM,SH) = \widehat {MSH}\)

Ta có: \(HM = MC \cdot \sin {60^^\circ } = \frac{a}{2} \cdot \sin {60^^\circ } = \frac{{a\sqrt 3 }}{4}\);

\(HC = MC \cdot \cos {60^^\circ } = \frac{a}{4} \Rightarrow AH = AC - HC = a - \frac{a}{4} = \frac{{3a}}{4}\)

Ta có: \(SH = \sqrt {S{A^2} + A{H^2}}  = \sqrt {{{(a\sqrt 5 )}^2} - {a^2} + {{\left( {\frac{{3a}}{4}} \right)}^2}}  = \frac{{\sqrt {73} }}{4}a\)

Xét \(\Delta SHM\) vuông tại \(H:\tan \widehat {MSH} = \frac{{HM}}{{SH}} = \frac{{\frac{{a\sqrt 3 }}{4}}}{{\frac{{\sqrt {73} a}}{4}}} = \frac{{\sqrt {219} }}{{73}} \Rightarrow \widehat {MSH} \approx {11,5^0}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(90^\circ \).  

B. \(60^\circ \). 
C. \(30^\circ \). 
D. \(45^\circ \).

Lời giải

Cho hình lập phương ABCD.A'B'C'D', góc giữa hai đường thẳng A'B và B'C là (ảnh 1)

Ta có \(B'C\;{\rm{//}}\;A'D\)\( \Rightarrow \widehat {\left( {A'B;B'C} \right)} = \widehat {\left( {A'B;A'D} \right)}\)\( = \widehat {DA'B}\).

Xét \(\Delta DA'B\) có \(A'D = A'B\)\( = BD\) nên \(\Delta DA'B\) là tam giác đều.

Vậy \(\widehat {DA'B}\)\( = 60^\circ \).

Câu 2

a) \[f'\left( x \right) = {x^2} + x - 2\]

Đúng
Sai

b) \[f'\left( x \right) = 0\] có 1 nghiệm

Đúng
Sai

c) \[f'\left( x \right) =  - 2\] có 2 nghiệm

Đúng
Sai
d) \[f'\left( x \right) = 10\] có 1 nghiệm
Đúng
Sai

Lời giải

a) Đúng

b) Sai

c) Đúng

d) Sai

a) Ta có \[f'\left( x \right) = \left( {\frac{{{x^3}}}{3} + \frac{{{x^2}}}{2} - 2x} \right) = {x^2} + x - 2\]

b) \[f'\left( x \right) = 0 \Leftrightarrow {x^2} + x - 2 = 0 \Leftrightarrow x = 1 \vee x =  - 2\]

c) \[f'\left( x \right) =  - 2 \Leftrightarrow {x^2} + x - 2 =  - 2 \Leftrightarrow {x^2} + x = 0 \Leftrightarrow x = 0 \vee x =  - 1\]

d) \[f'\left( x \right) = 10 \Leftrightarrow {x^2} + x - 2 = 10 \Leftrightarrow {x^2} + x - 12 = 0 \Leftrightarrow x = 3 \vee x =  - 4\]

Câu 3

Phần 3. Câu trả lời ngắn.

Thí sinh trả lời đáp án từ câu 1 đến câu 6.

Khi tung một đồng xu không cân đối thì người ta thấy rằng xác suất để đồng xu xuất hiện mặt sấp bằng \(\frac{2}{3}\). Tung đồng xu này ba lần liên tiếp. Tính xác suất để chỉ xuất hiện mặt sấp;

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(P(A) - P(B)\). 

B. \(P(A) + P(B)\). 

C. \(P(A) \cdot P(B)\).  
D. \([1 - P(A)][1 - P(B)]\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP