Câu hỏi:

15/12/2025 71 Lưu

Cho hình chóp \(S.ABCD\) có \(SA \bot (ABCD),SA = 2a,ABCD\) là hình vuông cạnh bằng \(a\). Gọi \(O\) là tâm của \(ABCD\).

Tính khoảng cách từ \(S\) đến \(DM\) với \(M\) là trung điểm \(OC\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Trả lời: \(d(S,DM) = \frac{{\sqrt {190} }}{5}a\)

Lời giải

Cho hình chóp S.ABCD có SA vuông góc  (ABCD),SA = 2a,ABCD là hình vuông cạnh bằng a. Gọi O là tâm của ABCD.  Tính khoảng cách từ S đến DM với M là trung điểm OC. (ảnh 1)

Kẻ \(SK \bot DM\) tại \(K \Rightarrow d(S,DM) = SK\).

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{DM \bot SA}\\{DM \bot SK}\end{array} \Rightarrow DM \bot (SAK) \Rightarrow DM \bot AK} \right.\)

Ta có:

\( \Rightarrow \frac{{KA}}{{OD}} = \frac{{AM}}{{DM}} \Rightarrow KA = \frac{{AM \cdot OD}}{{DM}} = \frac{{\frac{3}{4}a\sqrt 2  \cdot a\sqrt 2 }}{{\sqrt {{{\left( {\frac{{a\sqrt 2 }}{2}} \right)}^2} + {{\left( {\frac{{a\sqrt 2 }}{4}} \right)}^2}} }} = \frac{{3\sqrt {10} }}{5}a\)

Ta có: \(SK = \sqrt {S{A^2} + A{K^2}}  = \sqrt {{{(2a)}^2} + {{\left( {\frac{{3\sqrt {10} }}{5}a} \right)}^2}}  = \frac{{\sqrt {190} }}{5}a\)

Vậy \(d(S,DM) = \frac{{\sqrt {190} }}{5}a\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời: \( \approx {54^^\circ }\)

Lời giải

Cho hình chóp  S.ABCD có đáy là hình vuông cạnh 2a,SC vuông góc (ABCD) và SC = 3a. Tính góc phẳng nhị diện B,SA,C? (ảnh 1)

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{BO \bot SA}\\{BO \bot AC}\end{array} \Rightarrow BO \bot (SAC)} \right.\)

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{(SBA) \cap (SAC) = SA}\\{{\mathop{\rm Trong}\nolimits} \,(SAC),OI \bot SA \Rightarrow [B,SA,C] = [B,SA,O] = \widehat {BIO}}\\{{\mathop{\rm Trong}\nolimits} \,(SBA),BI \bot SA}\end{array}} \right.\)

Ta có:

Xét \(\Delta BOI\) vuông tại \(O:\tan \widehat {BIO} = \frac{{BO}}{{IO}} = \frac{{a\sqrt 2 }}{{\frac{{3\sqrt {34} }}{{17}}a}} = \frac{{\sqrt {17} }}{3} \Rightarrow \widehat {BIO} \approx {54^^\circ }\)

Lời giải

Cho hình lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông tại B, AB = a, AA' = 2a. Tính khoảng cách từ điểm A đến mặt phẳng (A'BC}) (ảnh 1)

Dựng \[AH \bot A'B\].

Ta có \[\left. \begin{array}{l}BC \bot AB\\BC \bot AA'\end{array} \right\} \Rightarrow BC \bot \left( {A'AB} \right)\]\[ \Rightarrow BC \bot AH\]

Vậy \[AH \bot \left( {A'BC} \right)\]\[ \Rightarrow d\left( {A,\left( {A'BC} \right)} \right) = AH\].

Xét tam giác vuông \[A'AB\] có \[\frac{1}{{A{H^2}}} = \frac{1}{{A{{A'}^2}}} + \frac{1}{{A{B^2}}}\]\[ \Leftrightarrow AH = \frac{{2\sqrt 5 a}}{5}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

a) Phương trình có nghiệm dương nếu \[m > 0\].

Đúng
Sai

b) Phương trình luôn có nghiệm với mọi \[m\].

Đúng
Sai

c) Phương trình luôn có nghiệm duy nhất \[x = {\log _3}\left( {m + 1} \right)\].

Đúng
Sai
d) Phương trình có nghiệm với \[m \ge  - 1\].
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP