Cho hàm số \(f\left( x \right) = {3^{2x}} - {2.3^x}\) có đồ thị như hình vẽ sau
Các mệnh đề sau đúng hay sai?

a) Đường thẳng \(y = 0\) cắt đồ thị hàm số \(\left( C \right)\) tại điểm có hoành độ là \(x = {\log _3}2\).
b) Bất phương trình \(f\left( x \right) \ge - 1\) có nghiệm duy nhất.
c) Bất phương trình \(f\left( x \right) \ge 0\) có tập nghiệm là: \(\left( { - \infty ;{{\log }_3}2} \right)\).
Quảng cáo
Trả lời:
|
a) Đúng |
b) Sai |
c) Sai |
d) Sai |
a: \({3^{2x}} - {2.3^x} = 0 \Leftrightarrow {3^x} - 2 = 0 \Leftrightarrow x = {\log _3}2\) nên a đúng.
b Bất phương trình \(f\left( x \right) \ge - 1\) có nghiệm duy nhất: b sai.
c Bất phương trình \(f\left( x \right) \ge 0\) có tập nghiệm là: \(\left( {{{\log }_3}2; + \infty } \right)\) nên c sai.
d Đường thẳng \(y = 0\) cắt đồ thị hàm số \(\left( C \right)\) tại \(2\) điểm phân biệt: d sai.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
a) Ta có \[\mathop {\lim }\limits_{x \to 1} \frac{{{x^2} - 1}}{{x - 1}} = 2\]
b) Với \(a = - 2\) thì hàm số có đạo hàm tại \[x = 1\]
c) Với \(a = 2\) thì hàm số có đạo hàm tại \[x = 1\]
Lời giải
|
a) Đúng |
b) Sai |
c) Đúng |
d) Đúng |
Để hàm số có đạo hàm tại \[x = 1\] thì trước hết \[f(x)\] phải liên tục tại \[x = 1\]
Hay \[\mathop {\lim }\limits_{x \to 1} f(x) = \mathop {\lim }\limits_{x \to 1} \frac{{{x^2} - 1}}{{x - 1}} = 2 = f(1) = a\].
Khi đó, ta có:\[\mathop {\lim }\limits_{x \to 1} \frac{{f(x) - f(1)}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{\frac{{{x^2} - 1}}{{x - 1}} - 2}}{{x - 1}} = 1\].
Vậy \[a = 2\] là giá trị cần tìm.
Câu 2
a) \(x = \frac{{3a}}{4}\).
b)\(y = 2x\).
c) \(y = z + x\).
Lời giải
|
a) Sai |
b) Đúng |
c) Sai |
d) Đúng |

Tam giác \(ABC\) đều cạnh \(a\) nên đường cao \(CM = \frac{{a\sqrt 3 }}{2}\). Gọi \(N\) là trung điểm của \(AM\) \( \Rightarrow ON \bot AB;ON = \frac{{a\sqrt 3 }}{4}\).
Kẻ \(OH \bot SN\)\( \Rightarrow d\left( {O,\left( {SAB} \right)} \right) = OH\).
\[\frac{1}{{O{H^2}}} = \frac{1}{{S{O^2}}} + \frac{1}{{O{N^2}}}\]; \[ON = \frac{1}{2}CM = \frac{{a\sqrt 3 }}{4}\]; \[SO = \frac{{3a}}{4} \Rightarrow OH = \frac{{3a}}{8}\].
\(x = d\left( {O,\left( {SAB} \right)} \right) = \frac{{3a}}{8}\), \(y = d\left( {D,\left( {SAB} \right)} \right) = 2.d\left( {O,\left( {SAB} \right)} \right) = 2x\), \(z = d\left( {CD,SA} \right)\)\( = d\left( {D,\left( {SAB} \right)} \right) = 2x\).
Vậy \(x + y + z = 5x = \frac{{15a}}{8}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
a) Xác suất để chọn được 1 học sinh nam ở trường không thuận tay trái là: \(\frac{{273}}{{800}}{\rm{. }}\)
b) Xác suất để chọn được 1 học sinh nữ ở trường không thuận tay trái là: \(\frac{{89}}{{160}}{\rm{. }}\)
c) Xác suất để chọn được 1 học sinh nam, 1 học sinh nữ ở trường thuận tay trái lần lượt là: \(\frac{{11}}{{160}}{\rm{ v\`a }}\frac{{27}}{{800}}{\rm{. }}\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
![Một hộp phấn không bụi có dạng hình hộp chữ nhật, chiều cao hộp phấn bằng 8,2cm và đáy của nó có hai kích thước là 8,5cm;10,5cm (xem hình vẽ sau). Tìm góc phẳng nhị diện [A,B'D',A'] (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/12/blobid7-1765851756.png)