Câu hỏi:

16/12/2025 8 Lưu

Gọi \(M\left( {{x_0};{y_0}} \right)\) là điểm trên đồ thị hàm số \(y = {x^3} - 3{x^2} - 1\) mà tiếp tuyến tại đó có hệ số góc bé nhất trong các tiếp tuyến của đồ thị hàm số. Khi đó \(x_0^2 + y_0^2\) bằng bao nhiêu?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Trả lời: 10

Lời giải

Ta có \(y' = 3{x^2} - 6x\)

Suy ra hệ số góc \(k = 3x_0^2 - 6{x_0}\)

Ta có \(3x_0^2 - 6{x_0} \ge  - 3\) suy ra \({k_{\min }} =  - 3\) khi \({x_0} = 1\).

Từ đó suy ra \({y_0} =  - 3\)

Vậy \(x_0^2 + y_0^2 = {1^2} + {\left( { - 3} \right)^2} = 10\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

a) Ta có \[\mathop {\lim }\limits_{x \to 1} \frac{{{x^2} - 1}}{{x - 1}} = 2\]

Đúng
Sai

b) Với \(a =  - 2\) thì hàm số có đạo hàm tại \[x = 1\]

Đúng
Sai

c) Với \(a = 2\) thì hàm số có đạo hàm tại \[x = 1\]

Đúng
Sai
d) Với \(a = {m_0}\) thì hàm số có đạo hàm tại \[x = 1\], khi đó : \(\mathop {\lim }\limits_{x \to {m_0}} \left( {{x^2} + 2x - 3} \right) = 5\)
Đúng
Sai

Lời giải

a) Đúng

b) Sai

c) Đúng

d) Đúng

Để hàm số có đạo hàm tại \[x = 1\] thì trước hết \[f(x)\] phải liên tục tại \[x = 1\]

Hay \[\mathop {\lim }\limits_{x \to 1} f(x) = \mathop {\lim }\limits_{x \to 1} \frac{{{x^2} - 1}}{{x - 1}} = 2 = f(1) = a\].

Khi đó, ta có:\[\mathop {\lim }\limits_{x \to 1} \frac{{f(x) - f(1)}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{\frac{{{x^2} - 1}}{{x - 1}} - 2}}{{x - 1}} = 1\].

Vậy \[a = 2\] là giá trị cần tìm.

Lời giải

Trả lời: 2034

Lời giải

 Giả sử sau \(n\) năm dân số Việt Nam là \({113.10^6}\) ( người).

\( \Rightarrow {113.10^6} = {91,7.10^6}.{\left( {1 + 1,1\% } \right)^n}\) \( \Leftrightarrow {\left( {1,01} \right)^n} = \frac{{1130}}{{917}} \Leftrightarrow n = {\log _{1,011}}\frac{{1130}}{{917}} = 19\)

Vậy đến năm 2034 thì dân số Việt Nam là \(113\) triệu người.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\frac{{2x}}{{{x^2} - 1}}\).

B. \(\frac{{ - 2x}}{{{x^2} - 1}}\).       
C. \(\frac{1}{{{x^2} - 1}}\). 
D. \(\frac{x}{{1 - {x^2}}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP