Câu hỏi:

16/12/2025 31 Lưu

Cho chuyển động xác định bởi phương trình \[S = {t^3} - 3{t^2} - 9t\], trong đó \[t\] được tính bằng giây và \[S\] được tính bằng mét. Gia tốc tại thời điểm vận tốc triệt tiêu là

A. \[12{\rm{m/}}{{\rm{s}}^2}\]. 

B. \[ - 6{\rm{m/}}{{\rm{s}}^2}\].   
C. \[ - 12{\rm{m/}}{{\rm{s}}^2}\]. 
D. \[6{\rm{m/}}{{\rm{s}}^2}\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có

\[\begin{array}{l}v\left( t \right) = S'\left( t \right) = 3{t^2} - 6t - 9\\a\left( t \right) = v'\left( t \right) = 6t - 6\end{array}\]

Khi vận tốc triệt tiêu ta có \[v\left( t \right) = 0 \Leftrightarrow 3{t^2} - 6t - 9 = 0 \Leftrightarrow t = 3\] (vì \[t > 0\])

Khi đó gia tốc là \[a\left( 3 \right) = 6.3 - 6 = 1{\rm{2m/}}{{\rm{s}}^2}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời: \(\frac{{83}}{{735}}\)

Số phần tử của tập hợp \(S\) là \(A_8^4 - A_7^3 = 1470\) (phần tử).

Số có 4 chữ số có dạng \(\overline {abcd} \).

Gọi \(A\) là biến cố "Số chọn được có dạng \(\overline {abc0} \) có tổng các chũ số chia hết cho 3 ", \(B\) là biến cố "Số chọn được có dạng \(\overline {abc5} \) có tổng các chữ số chia hết cho 3".

Khi đó biến cố "Số chọn được chia hết cho 15" là \(A \cup B\).

Nếu \(d = 0\), bộ 3 số \((a;b;c)\) có tổng \(a + b + c\) chia hết cho 3. Ta có các bộ số thoả mãn là: \((1;2;3),(1;2;6),(1;3;5),(1;4;7),(1;5;6),(2;3;4),(2;3;7),(2;4;6),(2;6;7)\), \((3;4;5),(3;5;7),(4;5;6),(5;6;7)\).

Từ các bộ số này có thể lập được \(13.3! = 78\) (số). Suy ra \(P(A) = \frac{{78}}{{1470}} = \frac{{13}}{{245}}\).

Nếu \(d = 5\), bộ 3 số \((a;b;c)\) có tổng \(a + b + c + 5\) chia hết cho 3, ta có các bộ thoả mãn là: \((0;1;3),(0;1;6),(0;2;5),(0;3;4),(0;3;7),(0;4;6),(1;2;7),(1;3;6),(1;4;5)\), \((2;3;5),(0;6;7),(1;5;7),(2;4;7),(2;5;6),(3;4;6),(3;6;7),(4;5;7)\).

Từ các bộ số này có thể lập được \(7.4 + 10.3! = 88\) (số). Suy ra \(P(B) = \frac{{88}}{{1470}} = \frac{{44}}{{735}}\).

Ta có: \(P(A \cup B) = P(A) + P(B) = \frac{{13}}{{245}} + \frac{{44}}{{735}} = \frac{{83}}{{735}}\).

Vậy xác suất để chọn được số chia hết cho 15 tử tập hợp \(S\) là \(\frac{{83}}{{735}}\).

Lời giải

Trả lời: \((SC,(SAB)) \approx {12,1^0}\)

Lời giải

Cho hình chóp S.ABC có đáy là tam giác đều cạnh a,SB vuông góc (ABC) và SB = 4a. Tính góc giữa đường thẳng SC và mặt phẳng (SAB)? (ảnh 1)

Kẻ \(CI \bot AB \Rightarrow I\) là trung điểm \(AB\)

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{CI \bot AB}\\{CI \bot SB}\end{array} \Rightarrow CI \bot (SAB)} \right.\) tại \(I\) và \(SC\) cắt mp\((SAB)\) tại \(S\)

\( \Rightarrow SI\) là hình chiếu của \(SC\) trên mp \((SAB)\)

\( \Rightarrow (SC,(SAB)) = (SC,SI) = \widehat {CSI}\)

Ta có: \(IC = \frac{{a\sqrt 3 }}{2}\)

Ta có: \(SC = \sqrt {S{B^2} + B{C^2}}  = \sqrt {{{(4a)}^2} + {a^2}}  = \sqrt {17} a\)

Xét \(\Delta SCI\) vuông tại \(I\) : \(\sin \widehat {CSI} = \frac{{CI}}{{SC}} = \frac{{\frac{{a\sqrt 3 }}{2}}}{{\sqrt {17} a}} = \frac{{\sqrt {51} }}{{34}} \Rightarrow \widehat {CSI} \approx {12,1^0}\)

Vậy \((SC,(SAB)) \approx {12,1^0}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

a) Xác suất để chọn được một học sinh nam và một học sinh nữ ở khối lớp 11 mà thích uống nước giải khát \(A\) là \(\frac{{952}}{{4565}}\).

Đúng
Sai

b) Xác suất để chọn được một học sinh nam ở lớp \(11\;A\) và một học sinh nam ở lớp \(11\;B\) không thích nước giải khát \(A\) là \(\frac{1}{{2739}}\).

Đúng
Sai

c) Gọi \(A\) là biến cố: "Học sinh nam thích nước giải khát \(A\) ". Tính được \(P(A) = \frac{{42}}{{79}}\).

Đúng
Sai
d) Việc thích uống nước giải khát \(A\) có phụ thuộc vào giới tính.
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP