Câu hỏi:

16/12/2025 43 Lưu

Trong tin học, độ hiệu quả của một thuật toán tỉ lệ với tốc độ thực thi chương trình và được tính bởi \(E\left( n \right) = \frac{n}{{P\left( n \right)}}\), trong đó \(n\) là số lượng dữ liệu đầu vào và \(P\left( n \right)\) là độ phức tạp của thuật toán. Biết rằng một thuật toán có \(P\left( n \right) = {\log _2}n\) và khi \(n = 300\) thì để chạy nó, máy tính mất \(0,02\) giây. Hỏi khi \(n = 90000\) thì phải mất bao lâu để chạy chương trình tương ứng?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Trả lời: 3 giây

Lời giải

Ta có \(E\left( {300} \right) = \frac{{300}}{{{{\log }_2}300}}\) máy tính phải chạy mất \(0,02\) giây.

Suy ra \(E\left( {90000} \right) = \frac{{90000}}{{{{\log }_2}90000}}\) máy tính phải mất thời gian để chạy là:

\(\frac{{E\left( {90000} \right).0,02}}{{E\left( {300} \right)}} = 3\) giây.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời: \(\frac{{83}}{{735}}\)

Số phần tử của tập hợp \(S\) là \(A_8^4 - A_7^3 = 1470\) (phần tử).

Số có 4 chữ số có dạng \(\overline {abcd} \).

Gọi \(A\) là biến cố "Số chọn được có dạng \(\overline {abc0} \) có tổng các chũ số chia hết cho 3 ", \(B\) là biến cố "Số chọn được có dạng \(\overline {abc5} \) có tổng các chữ số chia hết cho 3".

Khi đó biến cố "Số chọn được chia hết cho 15" là \(A \cup B\).

Nếu \(d = 0\), bộ 3 số \((a;b;c)\) có tổng \(a + b + c\) chia hết cho 3. Ta có các bộ số thoả mãn là: \((1;2;3),(1;2;6),(1;3;5),(1;4;7),(1;5;6),(2;3;4),(2;3;7),(2;4;6),(2;6;7)\), \((3;4;5),(3;5;7),(4;5;6),(5;6;7)\).

Từ các bộ số này có thể lập được \(13.3! = 78\) (số). Suy ra \(P(A) = \frac{{78}}{{1470}} = \frac{{13}}{{245}}\).

Nếu \(d = 5\), bộ 3 số \((a;b;c)\) có tổng \(a + b + c + 5\) chia hết cho 3, ta có các bộ thoả mãn là: \((0;1;3),(0;1;6),(0;2;5),(0;3;4),(0;3;7),(0;4;6),(1;2;7),(1;3;6),(1;4;5)\), \((2;3;5),(0;6;7),(1;5;7),(2;4;7),(2;5;6),(3;4;6),(3;6;7),(4;5;7)\).

Từ các bộ số này có thể lập được \(7.4 + 10.3! = 88\) (số). Suy ra \(P(B) = \frac{{88}}{{1470}} = \frac{{44}}{{735}}\).

Ta có: \(P(A \cup B) = P(A) + P(B) = \frac{{13}}{{245}} + \frac{{44}}{{735}} = \frac{{83}}{{735}}\).

Vậy xác suất để chọn được số chia hết cho 15 tử tập hợp \(S\) là \(\frac{{83}}{{735}}\).

Lời giải

Trả lời: \((SC,(SAB)) \approx {12,1^0}\)

Lời giải

Cho hình chóp S.ABC có đáy là tam giác đều cạnh a,SB vuông góc (ABC) và SB = 4a. Tính góc giữa đường thẳng SC và mặt phẳng (SAB)? (ảnh 1)

Kẻ \(CI \bot AB \Rightarrow I\) là trung điểm \(AB\)

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{CI \bot AB}\\{CI \bot SB}\end{array} \Rightarrow CI \bot (SAB)} \right.\) tại \(I\) và \(SC\) cắt mp\((SAB)\) tại \(S\)

\( \Rightarrow SI\) là hình chiếu của \(SC\) trên mp \((SAB)\)

\( \Rightarrow (SC,(SAB)) = (SC,SI) = \widehat {CSI}\)

Ta có: \(IC = \frac{{a\sqrt 3 }}{2}\)

Ta có: \(SC = \sqrt {S{B^2} + B{C^2}}  = \sqrt {{{(4a)}^2} + {a^2}}  = \sqrt {17} a\)

Xét \(\Delta SCI\) vuông tại \(I\) : \(\sin \widehat {CSI} = \frac{{CI}}{{SC}} = \frac{{\frac{{a\sqrt 3 }}{2}}}{{\sqrt {17} a}} = \frac{{\sqrt {51} }}{{34}} \Rightarrow \widehat {CSI} \approx {12,1^0}\)

Vậy \((SC,(SAB)) \approx {12,1^0}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

a) Xác suất để chọn được một học sinh nam và một học sinh nữ ở khối lớp 11 mà thích uống nước giải khát \(A\) là \(\frac{{952}}{{4565}}\).

Đúng
Sai

b) Xác suất để chọn được một học sinh nam ở lớp \(11\;A\) và một học sinh nam ở lớp \(11\;B\) không thích nước giải khát \(A\) là \(\frac{1}{{2739}}\).

Đúng
Sai

c) Gọi \(A\) là biến cố: "Học sinh nam thích nước giải khát \(A\) ". Tính được \(P(A) = \frac{{42}}{{79}}\).

Đúng
Sai
d) Việc thích uống nước giải khát \(A\) có phụ thuộc vào giới tính.
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP