Câu hỏi:

16/12/2025 14 Lưu

Trong tin học, độ hiệu quả của một thuật toán tỉ lệ với tốc độ thực thi chương trình và được tính bởi \(E\left( n \right) = \frac{n}{{P\left( n \right)}}\), trong đó \(n\) là số lượng dữ liệu đầu vào và \(P\left( n \right)\) là độ phức tạp của thuật toán. Biết rằng một thuật toán có \(P\left( n \right) = {\log _2}n\) và khi \(n = 300\) thì để chạy nó, máy tính mất \(0,02\) giây. Hỏi khi \(n = 90000\) thì phải mất bao lâu để chạy chương trình tương ứng?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Trả lời: 3 giây

Lời giải

Ta có \(E\left( {300} \right) = \frac{{300}}{{{{\log }_2}300}}\) máy tính phải chạy mất \(0,02\) giây.

Suy ra \(E\left( {90000} \right) = \frac{{90000}}{{{{\log }_2}90000}}\) máy tính phải mất thời gian để chạy là:

\(\frac{{E\left( {90000} \right).0,02}}{{E\left( {300} \right)}} = 3\) giây.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời: \(\frac{{83}}{{735}}\)

Số phần tử của tập hợp \(S\) là \(A_8^4 - A_7^3 = 1470\) (phần tử).

Số có 4 chữ số có dạng \(\overline {abcd} \).

Gọi \(A\) là biến cố "Số chọn được có dạng \(\overline {abc0} \) có tổng các chũ số chia hết cho 3 ", \(B\) là biến cố "Số chọn được có dạng \(\overline {abc5} \) có tổng các chữ số chia hết cho 3".

Khi đó biến cố "Số chọn được chia hết cho 15" là \(A \cup B\).

Nếu \(d = 0\), bộ 3 số \((a;b;c)\) có tổng \(a + b + c\) chia hết cho 3. Ta có các bộ số thoả mãn là: \((1;2;3),(1;2;6),(1;3;5),(1;4;7),(1;5;6),(2;3;4),(2;3;7),(2;4;6),(2;6;7)\), \((3;4;5),(3;5;7),(4;5;6),(5;6;7)\).

Từ các bộ số này có thể lập được \(13.3! = 78\) (số). Suy ra \(P(A) = \frac{{78}}{{1470}} = \frac{{13}}{{245}}\).

Nếu \(d = 5\), bộ 3 số \((a;b;c)\) có tổng \(a + b + c + 5\) chia hết cho 3, ta có các bộ thoả mãn là: \((0;1;3),(0;1;6),(0;2;5),(0;3;4),(0;3;7),(0;4;6),(1;2;7),(1;3;6),(1;4;5)\), \((2;3;5),(0;6;7),(1;5;7),(2;4;7),(2;5;6),(3;4;6),(3;6;7),(4;5;7)\).

Từ các bộ số này có thể lập được \(7.4 + 10.3! = 88\) (số). Suy ra \(P(B) = \frac{{88}}{{1470}} = \frac{{44}}{{735}}\).

Ta có: \(P(A \cup B) = P(A) + P(B) = \frac{{13}}{{245}} + \frac{{44}}{{735}} = \frac{{83}}{{735}}\).

Vậy xác suất để chọn được số chia hết cho 15 tử tập hợp \(S\) là \(\frac{{83}}{{735}}\).

Lời giải

Cho hình chóp S.ABCD có đáy ABCD là hình vuông, hai mặt bên (SAB) và (SAD) vuông góc với mặt đáy. AH, AK lần lượt là đường cao của tam giác SAB, SAD. Mệnh đề nào sau đây là sai? (ảnh 1)

Ta có \(\left\{ \begin{array}{l}\left( {SAB} \right) \bot \left( {ABCD} \right)\\\left( {SAD} \right) \bot \left( {ABCD} \right)\end{array} \right.\) nên \[SA \bot \left( {ABCD} \right)\]

Suy ra \[SA \bot AC\] (B đúng); \(SA \bot BC\); \(SA \bot BD\).

Mặt khác \(BC \bot AB\) nên \(BC \bot \left( {SAB} \right)\) suy ra \[BC \bot AH\] (A đúng).

và \(BD \bot AC\) nên \(BD \bot \left( {SAC} \right)\) suy ra \[BD \bot SC\];

Đồng thời \(HK\;{\rm{//}}\;BD\) nên \(HK \bot SC\) (C đúng).

Vậy mệnh đề sai là \(AK \bot BD\) (vì không đủ điều kiện chứng minh).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP