Câu hỏi:

16/12/2025 86 Lưu

Phần 3. Câu trả lời ngắn.

Thí sinh trả lời đáp án từ câu 1 đến câu 6.

Hùng và Dũng cùng học lớp \(11\;A\). Xác suất để Hùng và Dũng thi qua môn Toán Xác suất để ít nhất một bạn thi qua môn Toán là 0,85 ; xác suất để một bạn không thi qua môn Ngữ văn là 0,4. Nếu xem như việc thi qua môn Ngữ văn và môn Toán độc lập với nhau. Tính xác suất để hai bạn Hùng và Dũng cùng trượt 1 môn.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Trả lời: 0,65

Lời giải

Xác suất để hai bạn cùng trượt môn Toán là 0,15 ;

Xác suất hai bạn cùng trượt môn Ngữ văn là 0,5 ;

Xác suất để hai bạn cùng trượt 1 môn là: \(0,15 + 0,5 = 0,65\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

a) Xác suất để An ném trước mà vào rổ là \(\frac{{25}}{{30}}\).

Đúng
Sai

b) Xác suất để An ném sau mà vào rổ là \(\frac{{22}}{{30}}\).

Đúng
Sai

c) Xác suất để An ném vào rổ là \(\frac{{47}}{{120}}\).

Đúng
Sai
d) Việc ném bóng vào rổ của An và Bình sẽ không phụ thuộc vào việc được ném trước hay ném sau.
Đúng
Sai

Lời giải

a) Đúng

b) Đúng

c) Sai

d) Sai

Xác suất để An ném trước mà vào rổ là \(\frac{{25}}{{30}}\).

Xác suất để An ném sau mà vào rổ là \(\frac{{22}}{{30}}\).

Do việc ném trước hay sau đều là ngẫu nhiên nên xác suất ném trước và ném sau đều bằng \(\frac{1}{2}\).

Xác suất để An ném vào rổ là \(\frac{1}{2} \cdot \left( {\frac{{25}}{{30}} + \frac{{22}}{{30}}} \right) = \frac{{47}}{{60}}\).

Tương tự tính được xác suất để Bình ném vào rổ là \(\frac{5}{6}\).

Ta thấy xác suất An ném trước mà vào rổ là \(\frac{{25}}{{30}}\), ném sau mà vào rổ là \(\frac{{22}}{{30}}\). Bình cũng có sự khác nhau như vậy nên việc ném bóng vào rổ của An và Bình sẽ phụ thuộc vào việc được ném trước hay ném sau. Hay biến cố ném bóng vào rổ của An và Bình không độc lập với việc chọn thứ tự ném.

Lời giải

Trả lời: \( \approx {73,4^^\circ }\)

Lời giải

Cho hình hộp chữ nhật ABCD.A'B'C'D' có AB = a,AD = 2a,AA' = 3a. Tính góc phẳng nhị diện [A',BD,A]? (ảnh 1)

Kẻ \(AI \bot BD\). Mà \(BD \bot {A^\prime }A \Rightarrow BD \bot \left( {A{A^\prime }I} \right)\)

\(\begin{array}{l}{\rm{ Ta c\'o : }}\left\{ {\begin{array}{*{20}{l}}{\left( {{A^\prime }BD} \right) \cap (ABD) = BD}\\{{\mathop{\rm Trong}\nolimits} (ABD),AI \bot BD}\\{{\mathop{\rm Trong}\nolimits} \left( {{A^\prime }BD} \right),{A^\prime }I \bot BD}\end{array}} \right.\\ \Rightarrow \left[ {{A^\prime },BD,A} \right] = \widehat {{A^\prime }IA}\end{array}\)

Ta có: \(AI = \frac{1}{{\sqrt {\frac{1}{{A{B^2}}} + \frac{1}{{A{D^2}}}} }} = \frac{1}{{\sqrt {\frac{1}{{{a^2}}} + \frac{1}{{{{(2a)}^2}}}} }} = \frac{{2\sqrt 5 }}{5}a\)

Xét \(\Delta A{A^\prime }I\) vuông tại \(A:\tan \widehat {{A^\prime }IA} = \frac{{{A^\prime }A}}{{AI}} = \frac{{a\sqrt 3 }}{{\frac{{2\sqrt 5 }}{5}a}} = \frac{{3\sqrt 5 }}{2} \Rightarrow \widehat {{A^\prime }IA} \approx {73,4^^\circ }\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. Mặt phẳng \(\left( {SBD} \right)\) vuông góc với mặt phẳng \(\left( {ABCD} \right)\).  

B. Mặt phẳng \(\left( {SBC} \right)\) vuông góc với mặt phẳng \(\left( {ABCD} \right)\).

C. Mặt phẳng \(\left( {SAD} \right)\) vuông góc với mặt phẳng \(\left( {ABCD} \right)\).

D. Mặt phẳng \(\left( {SAB} \right)\) vuông góc với mặt phẳng \(\left( {ABCD} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP