Câu hỏi:

16/12/2025 51 Lưu

Cho một vật chuyển động theo phương trình \(s\left( t \right) =  - {t^2} + 40t + 10\) trong đó \(s\)là quãng đường vật đi được (đơn vị \(m\)), \(t\) là thời gian chuyển động (đơn vị \(s\)). Tại thời điểm vật dừng lại thì vật đi được quãng đường bao nhiêu?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Trả lời: 410m

Lời giải

 Ta có phương trình vận tốc của vật: \(v\left( t \right) = s'\left( t \right) =  - 2t + 40\).

Thời gian vật chuyển động cho đến khi dừng lại: \(v\left( t \right) = 0 \Leftrightarrow  - 2t + 40 = 0 \Leftrightarrow t = 20(s)\).

Quãng đường vật đi được là: \(s = s\left( {20} \right) = 410(m)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

a) Xác suất để An ném trước mà vào rổ là \(\frac{{25}}{{30}}\).

Đúng
Sai

b) Xác suất để An ném sau mà vào rổ là \(\frac{{22}}{{30}}\).

Đúng
Sai

c) Xác suất để An ném vào rổ là \(\frac{{47}}{{120}}\).

Đúng
Sai
d) Việc ném bóng vào rổ của An và Bình sẽ không phụ thuộc vào việc được ném trước hay ném sau.
Đúng
Sai

Lời giải

a) Đúng

b) Đúng

c) Sai

d) Sai

Xác suất để An ném trước mà vào rổ là \(\frac{{25}}{{30}}\).

Xác suất để An ném sau mà vào rổ là \(\frac{{22}}{{30}}\).

Do việc ném trước hay sau đều là ngẫu nhiên nên xác suất ném trước và ném sau đều bằng \(\frac{1}{2}\).

Xác suất để An ném vào rổ là \(\frac{1}{2} \cdot \left( {\frac{{25}}{{30}} + \frac{{22}}{{30}}} \right) = \frac{{47}}{{60}}\).

Tương tự tính được xác suất để Bình ném vào rổ là \(\frac{5}{6}\).

Ta thấy xác suất An ném trước mà vào rổ là \(\frac{{25}}{{30}}\), ném sau mà vào rổ là \(\frac{{22}}{{30}}\). Bình cũng có sự khác nhau như vậy nên việc ném bóng vào rổ của An và Bình sẽ phụ thuộc vào việc được ném trước hay ném sau. Hay biến cố ném bóng vào rổ của An và Bình không độc lập với việc chọn thứ tự ném.

Lời giải

Trả lời: \( \approx {73,4^^\circ }\)

Lời giải

Cho hình hộp chữ nhật ABCD.A'B'C'D' có AB = a,AD = 2a,AA' = 3a. Tính góc phẳng nhị diện [A',BD,A]? (ảnh 1)

Kẻ \(AI \bot BD\). Mà \(BD \bot {A^\prime }A \Rightarrow BD \bot \left( {A{A^\prime }I} \right)\)

\(\begin{array}{l}{\rm{ Ta c\'o : }}\left\{ {\begin{array}{*{20}{l}}{\left( {{A^\prime }BD} \right) \cap (ABD) = BD}\\{{\mathop{\rm Trong}\nolimits} (ABD),AI \bot BD}\\{{\mathop{\rm Trong}\nolimits} \left( {{A^\prime }BD} \right),{A^\prime }I \bot BD}\end{array}} \right.\\ \Rightarrow \left[ {{A^\prime },BD,A} \right] = \widehat {{A^\prime }IA}\end{array}\)

Ta có: \(AI = \frac{1}{{\sqrt {\frac{1}{{A{B^2}}} + \frac{1}{{A{D^2}}}} }} = \frac{1}{{\sqrt {\frac{1}{{{a^2}}} + \frac{1}{{{{(2a)}^2}}}} }} = \frac{{2\sqrt 5 }}{5}a\)

Xét \(\Delta A{A^\prime }I\) vuông tại \(A:\tan \widehat {{A^\prime }IA} = \frac{{{A^\prime }A}}{{AI}} = \frac{{a\sqrt 3 }}{{\frac{{2\sqrt 5 }}{5}a}} = \frac{{3\sqrt 5 }}{2} \Rightarrow \widehat {{A^\prime }IA} \approx {73,4^^\circ }\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. Mặt phẳng \(\left( {SBD} \right)\) vuông góc với mặt phẳng \(\left( {ABCD} \right)\).  

B. Mặt phẳng \(\left( {SBC} \right)\) vuông góc với mặt phẳng \(\left( {ABCD} \right)\).

C. Mặt phẳng \(\left( {SAD} \right)\) vuông góc với mặt phẳng \(\left( {ABCD} \right)\).

D. Mặt phẳng \(\left( {SAB} \right)\) vuông góc với mặt phẳng \(\left( {ABCD} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP