Câu hỏi:

16/12/2025 215 Lưu

Cho hình chóp đều \(S.ABCD\) có đáy cạnh a và chiều cao \(SO = 2a\). Gọi \(M,N,P\), \(Q\) lần lượt là trung điểm của \(SA,SB,SC,SD\). Tính thể tích khối chóp cụt đều \(ABCD.MNPQ\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Trả lời: \(\frac{7}{{12}}{a^3}\)

Lời giải

Cho hình chóp đều S.ABCD có đáy cạnh a và chiều cao SO = 2a. Gọi M,N,P, Q lần lượt là trung điểm của SA,SB,SC,SD. Tính thể tích khối chóp cụt đều ABCD.MNPQ. (ảnh 1)

\(\begin{array}{l}V = \frac{1}{3}\left( {{S_{ABCD}} + {S_{MNPQ}} + \sqrt {{S_{ABCD}} \cdot {S_{MNPQ}}} } \right) \cdot O{O^\prime }\\{S_{ABCD}} = {a^2}\\{S_{MNPQ}} = {\left( {\frac{1}{2}a} \right)^2} = \frac{1}{4}{a^2}\\ \Rightarrow V = \frac{1}{3}\left( {{a^2} + \frac{1}{4}{a^2} + \sqrt {{a^2} \cdot \frac{1}{4}{a^2}} } \right) \cdot a = \frac{7}{{12}}{a^3}\end{array}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\left( { - 1;6} \right)\) .   

B. \(\left( {\frac{5}{2};6} \right)\). 
C. \(\left( { - \infty ;6} \right)\). 
D. \(\left( {6; + \infty } \right)\).

Lời giải

Ta có \[{\log _{\frac{\pi }{4}}}\left( {x + 1} \right) > {\log _{\frac{\pi }{4}}}\left( {2x - 5} \right)\]\[ \Leftrightarrow \left\{ \begin{array}{l}x + 1 > 0\\2x - 5 > 0\\x + 1 < 2x - 5\end{array} \right. \Leftrightarrow x > 6\].

Lời giải

Trả lời: \( \approx {25,7^0}\)

Lời giải

Cho hình lăng trụ đều ABC.A'B'C' có đáy cạnh a, góc giữa đường thẳng A'B và mặt phẳng (ABC) là 60 độ. Tính góc giữa đường thẳng C'A và mặt phẳng (AA'B'B}? (ảnh 1)

Kẻ \({C^\prime }I \bot {A^\prime }{B^\prime }\)

Ta có: \({C^\prime }I \bot {A^\prime }A \Rightarrow {C^\prime }I \bot \left( {A{A^\prime }{B^\prime }B} \right)\) tại \(I\) và \({C^\prime }A\) cắt mp\(\left( {A{A^\prime }{B^\prime }B} \right)\) tại \(A\).

\( \Rightarrow AI\) là hình chiếu của \({C^\prime }A\) trên mp\(\left( {A{A^\prime }{B^\prime }B} \right)\)

\( \Rightarrow \left( {{C^\prime }A,\left( {A{A^\prime }{B^\prime }B} \right)} \right) = \left( {{C^\prime }A,AI} \right) = \widehat {{C^\prime }AI}\)

Ta có: \({A^\prime }A = AB \cdot \tan {60^^\circ } = \sqrt 3 a\)

\(AI = \sqrt {{A^\prime }{A^2} + {A^\prime }{I^2}}  = \sqrt {{{(a\sqrt 3 )}^2} + {{\left( {\frac{a}{2}} \right)}^2}}  = \frac{{\sqrt {13} }}{2}a\)

Xét \(\Delta {C^\prime }AI\) vuông tại \(I:\tan \widehat {{C^\prime }AI} = \frac{{{C^\prime }I}}{{AI}} = \frac{{\frac{{a\sqrt 3 }}{2}}}{{\frac{{\sqrt {13} a}}{2}}} = \frac{{\sqrt {39} }}{{13}} \Rightarrow \widehat {{C^\prime }AI} \approx {25,7^0}\)

Câu 3

a) \({\log _c}\left( {a + b} \right) > 1 + {\log _c}2\).   

Đúng
Sai

b) \({\log _{ab}}c > 0\).  

Đúng
Sai

c) \({\log _a}\frac{b}{c} > 0\).

Đúng
Sai

d) \({\log _b}\frac{a}{c} < 0\).

Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP