Câu hỏi:

16/12/2025 190 Lưu

Số ca bị nhiễm virus Covid-19 ở một quốc gia sau \(t\) ngày là \[P\left( t \right)\] và được tính bởi công thức \[P\left( t \right) = X.{e^{{r_0}\left( {t - 1} \right)}}\], trong đó \[X\]số ca bị nhiễm virus trong ngày thống kê đầu tiên, \[{r_0}\]h số lây nhiễm. Hỏi ngày thứ 20 có bao nhiêu ca bị lây nhiễm virus? (làm tròn đến hàng đơn vị). Biết rằng trong ngày đầu tiên thống kê có 253 ca bị nhiễm bệnh, ngày thứ 10 có 2024 ca bị lây nhiễm và trong suốt quá trình thống kê hệ số lây nhiễm là không đổi?             
Ngày thứ 20 số ca bị lây nhiễm virus là………………….

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Theo giả thiết ta có \[P\left( 1 \right) = X = 253\].

Ngày thứ 10 có 2024 ca nên \(P\left( {10} \right) = X.{{\rm{e}}^{9{r_0}}} \Leftrightarrow 2024 = 253.{{\rm{e}}^{9{r_0}}} \Leftrightarrow {r_0} = \frac{{\ln 8}}{9}\).

Vậy ngày thứ 20 số ca nhiễm bệnh là \(P\left( {20} \right) = 253.{{\rm{e}}^{\frac{{19\ln 8}}{9}}} \approx 20401.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \(x(m)\) là độ dài 1 cạnh của đáy.

Diện tích đáy của bể cá là \(S = \frac{2}{{0,5}} = 4\left( {{m^2}} \right)\). Suy ra độ dài cạnh còn lại của đáy là \(\frac{4}{x}\,\,\left( m \right)\).

Để chi phí mua kính làm bể là thấp nhất thì tổng diện tích các mặt của hình hộp là nhỏ nhất. Tổng diện tích các mặt là \(S = 0,5.x.2 + \frac{4}{x}.0,5.2 + 4 = x + \frac{4}{x}\,\, + 4\,\,\left( {m{}^2} \right)\).

                                     \( = {\left( {\sqrt x } \right)^2} + {\left( {\frac{2}{{\sqrt x }}} \right)^2} - 2\sqrt x .\frac{2}{{\sqrt x }} + 8\)

                                     \( = {\left( {\sqrt x  - \frac{2}{{\sqrt x }}} \right)^2} + 8 \ge 8\)

Vậy \(S\) nhỏ nhất bằng \(8\,\,\left( {m{}^2} \right)\)\( \Leftrightarrow \sqrt x  = \frac{2}{{\sqrt x }} \Leftrightarrow x = 2\)

Chi phí mua kính ít nhất là \(8.150\,000 = 1\,200\,000\) đồng.

Đáp án: \(1\,200\,000\) đồng.

Câu 2

A. \(m + n = 9\).       
B. \(m + n = - 7\).  
C. \(m + n = 30\).                           
D. \(m + n = 31\).

Lời giải

Chọn D

Ta có \(\sqrt {a\sqrt {a\sqrt {a\sqrt a } } }  = {a^{\left( {\left( {\left( {\frac{1}{2} + 1} \right).\frac{1}{2} + 1} \right).\frac{1}{2} + 1} \right).\frac{1}{2}}} = {a^{\frac{{15}}{{16}}}}\).

Câu 5

A. 1.                           
B. 2.                         
C. 3.                               
D. Vô số.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \({\log _a}m + {\log _a}n = {\log _a}\left( {m.n} \right)\)với mọi \(m,n \in \mathbb{R}.\)
B. \[{\log _a}\left( {{m^2}} \right) = 2{\log _a}\left| m \right|\] với mọi \(m \in \mathbb{R}.\)
C. \[{\log _a}m.{\log _a}n = {\log _a}\left( {m + n} \right)\]với mọi \(m,n.\).
D. \({\log _a}m - {\log _a}n = {\log _a}\left( {m.n} \right)\)với mọi \(m,n.\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP