Câu hỏi:

16/12/2025 63 Lưu

Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác vuông tại \(B\), \(AB = a,BC = a\sqrt 3 \). Hình chiếu vuông góc của \(S\) trên mặt đáy là trung điểm \(H\) của cạnh \(AC\). Biết \(SB = a\sqrt 2 \).Khoảng cách từ điểm \(H\) đến mặt phẳng \(\left( {SAB} \right)\) bằng:………….

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta suy ra được \(\widehat {AIC (ảnh 1)

Dựng \(HI \bot AB\).

Ta có: \[\left. \begin{array}{l}AB \bot IH\\AB \bot SH\end{array} \right\} \Rightarrow AB \bot \left( {SIH} \right)\] và \(\left( {SIH} \right) \cap \left( {SAB} \right) = SI\).

Dựng \(HK \bot SI\).

Ta có : \[\left. \begin{array}{l}HK \bot AB\\HK \bot SI\end{array} \right\} \Rightarrow HK \bot \left( {SAB} \right)\].

Vậy \(d\left( {H,\left( {SAB} \right)} \right) = HK\).

Do \(HI/{\kern 1pt} /BC\) nên dễ dàng chỉ ra được \(I\) là trung điểm của \(AB\) và \(IH = \frac{{BC}}{2} = \frac{{a\sqrt 3 }}{2}\), \(IA = IB = \frac{{AB}}{2} = \frac{a}{2}\).

Ta có \(AB \bot SI\) nên \(SI = \sqrt {S{B^2} - I{B^2}}  = \sqrt {2{a^2} - \frac{{{a^2}}}{4}}  = \frac{{a\sqrt 7 }}{2}\).

Do \(SH \bot IH\) nên xét tam giác vuông \(SIH\) có:

\(SH = \sqrt {S{I^2} - I{H^2}}  = \sqrt {\frac{{7{a^2}}}{4} - \frac{{3{a^2}}}{4}}  = a\); \(HK = \frac{{SH.HI}}{{SI}} = \frac{{a.\frac{{a\sqrt 3 }}{2}}}{{\frac{{a\sqrt 7 }}{2}}} = \frac{{a\sqrt {21} }}{7}\).

Do vậy, ta có \(d\left( {H,\left( {SAB} \right)} \right) = \frac{{a\sqrt {21} }}{7}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \(x(m)\) là độ dài 1 cạnh của đáy.

Diện tích đáy của bể cá là \(S = \frac{2}{{0,5}} = 4\left( {{m^2}} \right)\). Suy ra độ dài cạnh còn lại của đáy là \(\frac{4}{x}\,\,\left( m \right)\).

Để chi phí mua kính làm bể là thấp nhất thì tổng diện tích các mặt của hình hộp là nhỏ nhất. Tổng diện tích các mặt là \(S = 0,5.x.2 + \frac{4}{x}.0,5.2 + 4 = x + \frac{4}{x}\,\, + 4\,\,\left( {m{}^2} \right)\).

                                     \( = {\left( {\sqrt x } \right)^2} + {\left( {\frac{2}{{\sqrt x }}} \right)^2} - 2\sqrt x .\frac{2}{{\sqrt x }} + 8\)

                                     \( = {\left( {\sqrt x  - \frac{2}{{\sqrt x }}} \right)^2} + 8 \ge 8\)

Vậy \(S\) nhỏ nhất bằng \(8\,\,\left( {m{}^2} \right)\)\( \Leftrightarrow \sqrt x  = \frac{2}{{\sqrt x }} \Leftrightarrow x = 2\)

Chi phí mua kính ít nhất là \(8.150\,000 = 1\,200\,000\) đồng.

Đáp án: \(1\,200\,000\) đồng.

Câu 3

A. \(m + n = 9\).       
B. \(m + n = - 7\).  
C. \(m + n = 30\).                           
D. \(m + n = 31\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \({\log _a}m + {\log _a}n = {\log _a}\left( {m.n} \right)\)với mọi \(m,n \in \mathbb{R}.\)
B. \[{\log _a}\left( {{m^2}} \right) = 2{\log _a}\left| m \right|\] với mọi \(m \in \mathbb{R}.\)
C. \[{\log _a}m.{\log _a}n = {\log _a}\left( {m + n} \right)\]với mọi \(m,n.\).
D. \({\log _a}m - {\log _a}n = {\log _a}\left( {m.n} \right)\)với mọi \(m,n.\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

PHẦN II: TRẮC NGHIỆM ĐÚNG SAI (4 CÂU – MỖI CÂU CÓ 4 Ý)

Hãy nhận xét tính Đúng – Sai của mỗi nhận định sau:

a) \({\log _2}f(x) > {\log _2}g(x) \Leftrightarrow f(x) > g(x)\) 
Đúng
Sai
b) \(\ln {f^2}(x) = \ln {g^2}(x) \Leftrightarrow 2\ln f(x) = 2\ln g(x)\) 
Đúng
Sai
c) Hàm số \(y = {2^x}{.3^{ - x}}\) nghịch biến trên \(\mathbb{R}\) 
Đúng
Sai
d) Với mọi \(x > y > 0,\,\,x \ne 1\) thì \({\log _x}y < 1\)
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP