Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác vuông tại \(B\), \(AB = a,BC = a\sqrt 3 \). Hình chiếu vuông góc của \(S\) trên mặt đáy là trung điểm \(H\) của cạnh \(AC\). Biết \(SB = a\sqrt 2 \).Khoảng cách từ điểm \(H\) đến mặt phẳng \(\left( {SAB} \right)\) bằng:………….
Quảng cáo
Trả lời:

Dựng \(HI \bot AB\).
Ta có: \[\left. \begin{array}{l}AB \bot IH\\AB \bot SH\end{array} \right\} \Rightarrow AB \bot \left( {SIH} \right)\] và \(\left( {SIH} \right) \cap \left( {SAB} \right) = SI\).
Dựng \(HK \bot SI\).
Ta có : \[\left. \begin{array}{l}HK \bot AB\\HK \bot SI\end{array} \right\} \Rightarrow HK \bot \left( {SAB} \right)\].
Vậy \(d\left( {H,\left( {SAB} \right)} \right) = HK\).
Do \(HI/{\kern 1pt} /BC\) nên dễ dàng chỉ ra được \(I\) là trung điểm của \(AB\) và \(IH = \frac{{BC}}{2} = \frac{{a\sqrt 3 }}{2}\), \(IA = IB = \frac{{AB}}{2} = \frac{a}{2}\).
Ta có \(AB \bot SI\) nên \(SI = \sqrt {S{B^2} - I{B^2}} = \sqrt {2{a^2} - \frac{{{a^2}}}{4}} = \frac{{a\sqrt 7 }}{2}\).
Do \(SH \bot IH\) nên xét tam giác vuông \(SIH\) có:
\(SH = \sqrt {S{I^2} - I{H^2}} = \sqrt {\frac{{7{a^2}}}{4} - \frac{{3{a^2}}}{4}} = a\); \(HK = \frac{{SH.HI}}{{SI}} = \frac{{a.\frac{{a\sqrt 3 }}{2}}}{{\frac{{a\sqrt 7 }}{2}}} = \frac{{a\sqrt {21} }}{7}\).
Do vậy, ta có \(d\left( {H,\left( {SAB} \right)} \right) = \frac{{a\sqrt {21} }}{7}\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi \(x(m)\) là độ dài 1 cạnh của đáy.
Diện tích đáy của bể cá là \(S = \frac{2}{{0,5}} = 4\left( {{m^2}} \right)\). Suy ra độ dài cạnh còn lại của đáy là \(\frac{4}{x}\,\,\left( m \right)\).
Để chi phí mua kính làm bể là thấp nhất thì tổng diện tích các mặt của hình hộp là nhỏ nhất. Tổng diện tích các mặt là \(S = 0,5.x.2 + \frac{4}{x}.0,5.2 + 4 = x + \frac{4}{x}\,\, + 4\,\,\left( {m{}^2} \right)\).
\( = {\left( {\sqrt x } \right)^2} + {\left( {\frac{2}{{\sqrt x }}} \right)^2} - 2\sqrt x .\frac{2}{{\sqrt x }} + 8\)
\( = {\left( {\sqrt x - \frac{2}{{\sqrt x }}} \right)^2} + 8 \ge 8\)
Vậy \(S\) nhỏ nhất bằng \(8\,\,\left( {m{}^2} \right)\)\( \Leftrightarrow \sqrt x = \frac{2}{{\sqrt x }} \Leftrightarrow x = 2\)
Chi phí mua kính ít nhất là \(8.150\,000 = 1\,200\,000\) đồng.
Đáp án: \(1\,200\,000\) đồng.
Câu 2
Lời giải
|
a) \({\log _2}f(x) > {\log _2}g(x) \Leftrightarrow f(x) > g(x)\) |
Sai vì thiếu điều kiện xác định Sửa lại: \({\log _2}f(x) > {\log _2}g(x) \Leftrightarrow f(x) > g(x) > 0\) |
|
b) \(\ln {f^2}(x) = \ln {g^2}(x) \Leftrightarrow 2\ln f(x) = 2\ln g(x)\) |
Sai Sửa lại: \(\ln {f^2}(x) = \ln {g^2}(x) \Leftrightarrow 2\ln \left| {f(x)} \right| = 2\ln \left| {g(x)} \right|\) |
|
c) Hàm số \(y = {2^x}{.3^{ - x}}\) nghịch biến trên \(\mathbb{R}\) |
Đúng vì \(y = {2^x}{.3^{ - x}} = \frac{{{2^x}}}{{{3^x}}} = {\left( {\frac{2}{3}} \right)^x}\) nghịch biến trên \(\mathbb{R}\) |
|
d) Với mọi \(x > y > 0,\,\,x \ne 1\) thì \({\log _x}y < 1\) |
Sai vì Nếu \(x > 1\) thì \(x > y > 0 \Rightarrow {\log _x}x > {\log _x}y \Rightarrow {\log _x}y < 1\) Nếu \(0 < x < 1\) thì \(x > y > 0 \Rightarrow {\log _x}x < {\log _x}y \Rightarrow {\log _x}y > 1\) |
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.