Câu hỏi:

16/12/2025 10 Lưu

Một nhà sử học đến du lịch Đại kim tự tháp Giza (Ai Cập). Hướng dẫn viên du lịch cung cấp thông tin về Đại kim tự tháp này có dạng hình chóp tứ giác đều, với chiều cao \(146,6\,m\) và độ nghiêng của nó là \({51^0}\,50'40''\) (tức là số đo góc phẳng nhị diện tạo bởi mặt bên và mặt đáy). Nhà sử học rất muốn thông tin chi tiết hơn nữa về góc phẳng nhị diện tạo bởi hai mặt bên kề nhau của Đại kim tự tháp. Hãy giúp nhà sử học này tính số đo của góc phẳng nhị diện trên?

Một nhà sử học đến du lịch Đại kim tự tháp Gi (ảnh 1)

Số đo của góc phẳng nhị diện là…………………

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Một nhà sử học đến du lịch Đại kim tự tháp Gi (ảnh 2)

+ Gọi hình chóp tứ giác đều là \(S.ABCD\) như hình vẽ, \(O = AC \cap BD,\,M\) là trung điểm của \(AB\)

Khi đó góc nhị diện tạo bởi mặt bên \(\left( {SAB} \right)\) và mặt đáy \(\left( {ABCD} \right)\) là \(\left[ {S,AB,O} \right]\).

Ta có \(SM \bot AB\) và \(OM \bot AB\), suy ra \(\widehat {SMO}\) là góc phẳng nhị diện \(\left[ {S,AB,O} \right]\).

Xét tam giác \(SMO\) ta có \[\tan \widehat {SMO} = \frac{{SO}}{{OM}} \Rightarrow BC = 2OM = \frac{{2SO}}{{\tan \widehat {SMO}}} \approx 230,36\,(m)\]

+ Tìm số đo của góc phẳng nhị diện hai mặt bên, tức là số đo của góc phẳng nhị diện \(\left[ {A,SB,C} \right]\)

Kẻ \(AI \bot SB\), lại có \(SB \bot AC\)(vì\(AC \bot \left( {SBD} \right)\)) từ đó suy ra \(SB \bot CI\).

Vậy góc phẳng nhị diện \(\left[ {A,SB,C} \right]\) là góc \(\widehat {AIC}\).

Hai tam giác \(\Delta SAB = \Delta SBC\) suy ra hai đường cao \(AI = CI\), tam giác \(\Delta IAC\) cân tại I.

Đặt \(a = 230,36;\,h = 146,6\)

Ta có \(AC = a\sqrt 2  \Rightarrow OA = \frac{{a\sqrt 2 }}{2} \Rightarrow SA = \sqrt {S{O^2} + O{A^2}}  = \sqrt {{h^2} + \frac{{{a^2}}}{2}} \); \[SM = \sqrt {S{O^2} + O{M^2}}  = \sqrt {{h^2} + \frac{{{a^2}}}{4}} \]

Trong tam giác cân SAB ta có \({S_{\Delta SAB}} = \frac{1}{2}AI.SB = \frac{1}{2}SM.AB \Rightarrow AI = \frac{{SM.AB}}{{SB}} = \frac{{\sqrt {{h^2} + \frac{{{a^2}}}{4}} .a}}{{\sqrt {{h^2} + \frac{{{a^2}}}{2}} }}\)

\(\cos \widehat {AIC} = \frac{{A{I^2} + C{I^2} - A{C^2}}}{{2AI.CI}} = \frac{{2{a^2}\left( {\frac{{4{h^2} + {a^2}}}{{2\left( {2{h^2} + {a^2}} \right)}}} \right) - 2{a^2}}}{{2.\frac{{4{h^2} + {a^2}}}{{2\left( {2{h^2} + {a^2}} \right)}}{a^2}}} = \frac{{ - {a^2}}}{{4{h^2} + {a^2}}}\), thay số \(a = 230,36;\,h = 146,6\)

Ta suy ra được \(\widehat {AIC} \approx {112^0}26'16''\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \(x(m)\) là độ dài 1 cạnh của đáy.

Diện tích đáy của bể cá là \(S = \frac{2}{{0,5}} = 4\left( {{m^2}} \right)\). Suy ra độ dài cạnh còn lại của đáy là \(\frac{4}{x}\,\,\left( m \right)\).

Để chi phí mua kính làm bể là thấp nhất thì tổng diện tích các mặt của hình hộp là nhỏ nhất. Tổng diện tích các mặt là \(S = 0,5.x.2 + \frac{4}{x}.0,5.2 + 4 = x + \frac{4}{x}\,\, + 4\,\,\left( {m{}^2} \right)\).

                                     \( = {\left( {\sqrt x } \right)^2} + {\left( {\frac{2}{{\sqrt x }}} \right)^2} - 2\sqrt x .\frac{2}{{\sqrt x }} + 8\)

                                     \( = {\left( {\sqrt x  - \frac{2}{{\sqrt x }}} \right)^2} + 8 \ge 8\)

Vậy \(S\) nhỏ nhất bằng \(8\,\,\left( {m{}^2} \right)\)\( \Leftrightarrow \sqrt x  = \frac{2}{{\sqrt x }} \Leftrightarrow x = 2\)

Chi phí mua kính ít nhất là \(8.150\,000 = 1\,200\,000\) đồng.

Đáp án: \(1\,200\,000\) đồng.

Câu 2

PHẦN II: TRẮC NGHIỆM ĐÚNG SAI (4 CÂU – MỖI CÂU CÓ 4 Ý)

Hãy nhận xét tính Đúng – Sai của mỗi nhận định sau:

a) \({\log _2}f(x) > {\log _2}g(x) \Leftrightarrow f(x) > g(x)\) 
Đúng
Sai
b) \(\ln {f^2}(x) = \ln {g^2}(x) \Leftrightarrow 2\ln f(x) = 2\ln g(x)\) 
Đúng
Sai
c) Hàm số \(y = {2^x}{.3^{ - x}}\) nghịch biến trên \(\mathbb{R}\) 
Đúng
Sai
d) Với mọi \(x > y > 0,\,\,x \ne 1\) thì \({\log _x}y < 1\)
Đúng
Sai

Lời giải

a) \({\log _2}f(x) > {\log _2}g(x) \Leftrightarrow f(x) > g(x)\)

Sai vì thiếu điều kiện xác định

Sửa lại:

\({\log _2}f(x) > {\log _2}g(x) \Leftrightarrow f(x) > g(x) > 0\)

b) \(\ln {f^2}(x) = \ln {g^2}(x) \Leftrightarrow 2\ln f(x) = 2\ln g(x)\)

Sai

Sửa lại:

\(\ln {f^2}(x) = \ln {g^2}(x) \Leftrightarrow 2\ln \left| {f(x)} \right| = 2\ln \left| {g(x)} \right|\)

c) Hàm số \(y = {2^x}{.3^{ - x}}\) nghịch biến trên \(\mathbb{R}\)

Đúng\(y = {2^x}{.3^{ - x}} = \frac{{{2^x}}}{{{3^x}}} = {\left( {\frac{2}{3}} \right)^x}\) nghịch biến trên \(\mathbb{R}\)

d) Với mọi \(x > y > 0,\,\,x \ne 1\) thì \({\log _x}y < 1\)

Sai

Nếu \(x > 1\) thì \(x > y > 0 \Rightarrow {\log _x}x > {\log _x}y \Rightarrow {\log _x}y < 1\)

Nếu \(0 < x < 1\) thì \(x > y > 0 \Rightarrow {\log _x}x < {\log _x}y \Rightarrow {\log _x}y > 1\)

Câu 4

a) Góc giữa hai đường thẳng \(SA\)\(BC\) bằng \({90^0}\).
Đúng
Sai
b) Góc giữa đường thẳng \(SD\) và mặt phẳng \(\left( {ABCD} \right)\) bằng \({45^0}\).
Đúng
Sai
c) Góc giữa đường thẳng \(SB\) và mặt phẳng \(\left( {SAC} \right)\) bằng \({60^0}\).
Đúng
Sai
d) Nếu gọi \(\alpha \)là góc giữa hai mặt phẳng \(\left( {SBC} \right)\)\(\left( {SCD} \right)\) thì ta có \[\alpha \in \left( {{{60}^0};{{160}^0}} \right)\].
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \({\log _a}m + {\log _a}n = {\log _a}\left( {m.n} \right)\)với mọi \(m,n \in \mathbb{R}.\)
B. \[{\log _a}\left( {{m^2}} \right) = 2{\log _a}\left| m \right|\] với mọi \(m \in \mathbb{R}.\)
C. \[{\log _a}m.{\log _a}n = {\log _a}\left( {m + n} \right)\]với mọi \(m,n.\).
D. \({\log _a}m - {\log _a}n = {\log _a}\left( {m.n} \right)\)với mọi \(m,n.\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

a) \[SA \bot BC\]
Đúng
Sai
b) \[BM \bot (SAC)\]
Đúng
Sai
c) \[BC\]tạo với mặt phẳng \[\left( {SAB} \right)\] một góc có số đo là \[{45^0}\]
Đúng
Sai
d) Mặt phẳng \[\left( {SAB} \right)\]vuông góc với mặt phẳng\[\left( {SAC} \right)\]
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP