Câu hỏi:

16/12/2025 7 Lưu

Người ta dùng thuốc để khử khuẩn cho một thùng nước. Biết rằng nếu lúc đầu mỗi mililít nước chứa \({P_0}\) vi khuẩn thì sau \(t\) giờ (kể từ khi cho thuốc vào thùng), số lượng vi khuẩn trong mỗi mililít nước là \(P = {P_0} \cdot {10^{ - \alpha t}}\), với \(\alpha \) là một hằng số dương nào đó. Biết rằng ban đầu mỗi mililít nước có 9000 vi khuẩn và sau 2 giờ, số lượng vi khuẩn trong mỗi mililít nước là 6000. Hỏi sau mấy giờ (kết quả làm tròn đến hàng đơn vị) thì số lượng vi khuẩn trong mỗi mililít nước trong thùng ít hơn hoặc bằng 1000?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Sau 2 giờ, số lượng vi khuẩn trong mỗi mililít nước là 6000 nên ta có

\(6000 = {9000.10^{ - 2\alpha }} \Rightarrow \frac{2}{3} = {10^{ - 2\alpha }} \Rightarrow  - 2\alpha  = \log \frac{2}{3} \Rightarrow \alpha  =  - \frac{1}{2}\log \frac{2}{3} = \frac{1}{2}\log \frac{3}{2}\)

Do đó, để mỗi mililít nước trong thùng ít hơn hoặc bằng 1000 thì

\(\begin{array}{l}9000 \cdot {10^{ - \alpha t}} \le 1000\\ \Leftrightarrow {10^{ - \alpha t}} \le \frac{1}{9}\\ \Leftrightarrow  - \alpha t \le \log \frac{1}{9}\end{array}\)

\( \Leftrightarrow t \ge  - \frac{2}{\alpha }\log \frac{1}{3} =  - \frac{2}{{\frac{1}{2}\log \frac{3}{2}}} \cdot \log \frac{1}{3} = \frac{{4\log 3}}{{\log \frac{3}{2}}}{\rm{  }}\)

Khi làm tròn đến hàng đơn vị thời gian ít nhất là 11 (giờ).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Xét phép chiếu song song lên mặt phẳng \[\left( {A'B'C'D'} \right)\] theo phương chiếu \[BA'\]. Ta có \[N\] là ảnh của \[M\] hay \[M\] chính là giao điểm của \[B'D'\] và ảnh \[AC'\] qua phép chiếu này. Do đó ta xác định \[M,N\] như sau:

Trên \[A'B'\] kéo dài lấy điểm \[K\] sao cho \[A'K = B'A'\] thì \[ABA'K\] là hình bình hành nên \[AK//BA'\] suy ra \[K\] là ảnh của \[A\] trên \[AC'\] qua phép chiếu song song.

Gọi \[N = B'D' \cap KC'\]. Đường thẳng qua \[N\] và song song với \[AK\] cắt \[AC'\] tại \[M\]. Ta có \[M,N\] là các điểm cần xác định.

Theo định lí Thales, ta có \[\frac{{MA}}{{MC'}} = \frac{{NK}}{{NC'}} = \frac{{KB'}}{{C'D'}} = 2\].

 

Cho hình hộp \[ABCD.A'B'C'D'\]. Xác đ (ảnh 1)

Câu 5

A. \({a^6}\).              
B. \({a^{\frac{3}{2}}}\).                                
C. \({a^{\frac{2}{3}}}\).                                
D. \({a^{\frac{1}{6}}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(AB \bot (SBC)\).                               
B. \(AC \bot (SBC)\).                     
C. \(SA \bot (ABCD)\).                 
D. \(SO \bot (ABCD)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

a) Hình lăng trụ đã cho có 6 mặt, 12 cạnh, 8 đỉnh.
Đúng
Sai
b) Các mặt của hình lăng trụ đã cho là hình bình hành.
Đúng
Sai
c) Hai mặt phẳng \[\left( {AB'C'D} \right)\], \[\left( {A'BCD'} \right)\] vuông góc với nhau.
Đúng
Sai
d) Biết rằng, ba mặt có chung một đỉnh của hình lăng trụ có diện tích lần lượt \[10{\rm{c}}{{\rm{m}}^2},\,\,20{\rm{c}}{{\rm{m}}^2},\,\,32{\rm{c}}{{\rm{m}}^2}.\] Khi đó, diện tích toàn phần của hình lăng trụ bằng \(124\,\,c{m^2}\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP