Câu hỏi:

17/12/2025 61 Lưu

Trong mặt phẳng toạ độ \(Oxy\), cho tam giác \(ABC\) cân tại \(A\) biết đỉnh \(A\left( {6;6} \right)\). Đường thẳng \(d\) đi qua trung điểm các cạnh \(AB,\,AC\) có phương trình \(x + y - 4 = 0\). Biết điềm \(E\left( {1;\, - 3} \right)\) thuộc đường cao đi qua đỉnh \(C\) của tam giác \(ABC\). Giả sử \(C\left( {{x_C};\,{y_C}} \right)\) và \({x_C} > 0\). Tính \(x_C^2 + y_C^2\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Trong mặt phẳng toạ độ \(Oxy\), cho tam giác \(AB (ảnh 1)

Ta có: \(AH \bot d \Rightarrow \) phương trình đường thẳng \(AH:x - y = 0\).

Gọi \(H,\,D\) lần lượt là trung điểm của \(BC,\,AH\).

Toạ độ \(D\) là nghiệm của hệ: \(\left\{ \begin{array}{l}x + y - 4 = 0\\x - y = 0\end{array} \right. \Leftrightarrow x = y = 2\). Vậy \(D\left( {2;\,2} \right) \Rightarrow H\left( { - 2; - 2} \right)\).

Do \(BC//d \Rightarrow BC\) có phương trình: \(x + y + 4 = 0\).

\(C \in BC \Rightarrow C\left( {t;\, - t - 4} \right)\) với \(t > 0\). Do \(H\) là trung điểm \(BC\) nên suy ra \(B\left( { - t - 4;\,t} \right)\).

Ta có \(\overrightarrow {AB} .\overrightarrow {CE}  = 0 \Leftrightarrow {t^2} + 2t - 8 = 0 \Rightarrow t = 2\) (do \(t > 0\)).

Vậy \(C\left( {2;\, - 6} \right)\) nên \(x_C^2 + y_C^2 = {2^2} + {\left( { - 6} \right)^2} = 40\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \({\delta _a} = \frac{{{\Delta _a}}}{{|a|}} \Rightarrow |a| = \frac{{{\Delta _a}}}{{{\delta _a}}}\).

Do \({\delta _a} \le 0,15\% ;d = 0,75\) nên \(|a| \ge \frac{{0,75}}{{0,15}}.100 = 500\).

Vậy độ dài gần đúng của cây cầu là \[500m\].

Câu 2

A. \[\frac{{120}}{{341}}\].                        
B. \[\frac{{105}}{{341}}\].                             
C. \[\frac{{91}}{{5797}}\].                             
D. \[\frac{{21}}{{682}}\]

Lời giải

Số phần tử của không gian mẫu \[n\left( \Omega  \right) = C_{34}^5\]

Gọi \[A\] là biến cố: "Chọn được 2 học sinh nam và 3 học sinh nữ".

Chọn 2 học sinh nam trong số 16 học sinh nam thì có \[C_{16}^2\]cách chọn.

Chọn 3 học sinh nữ trong số 18 học sinh nữ thì có \[C_{18}^3\]cách chọn.

Áp dụng quy tắc nhân, sẽ có \[C_{16}^2.C_{18}^3\]cách chọn 2 học sinh nam và 3 học sinh nữ.

Vậy xác suất cần tìm \[P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}} = \frac{{C_{16}^2.C_{18}^3}}{{C_{34}^5}} = \frac{{120}}{{341}}\].

Câu 3

a) Có 6 cách để hai lần gieo đều ra số chấm giống nhau.
Đúng
Sai
b) Có 6 cách để gieo được lần đầu ra mặt 6 chấm.
Đúng
Sai
c) Có 12 cách để trong hai lần gieo xuất hiện đúng một lần mặt 1 chấm.
Đúng
Sai
d) Có 33 cách để sau hai lần gieo được tổng số chấm không bé hơn 4.
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \({\delta _a} < 0,1316\% \).                                                               
B. \({\delta _a} < 1,316\% \).
C. \({\delta _a} = 0,1316\% \).                                                               
D. \({\delta _a} > 0,1316\% \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[256\].                  
B. \[120\].                
C. \[24\].                         
D. \[16\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP