Câu hỏi:

17/12/2025 7 Lưu

Có bao nhiêu số tự nhiên gồm 4 chữ số đôi một khác nhau, chia hết cho 15 và mỗi chữ số đều không vượt quá 5.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Mỗi chữ số đều không vượt quá 5. Ta lập số từ tập hợp \(\left\{ {0;1;2;3;4;5} \right\}\)

Số chia hết cho 15 là số vừa chia hết cho 3 vừa chia hết cho 5. Do đó tận cùng nó là 0 hoặc 5.

Trường hợp 1:

Số cần lập có dạng \(\overline {abc0} \) với \(a;b;c \in \left\{ {1;2;3;4;5} \right\}\)

Tổng \(a + b + c + 0\) phải chia hết cho 3\( \Rightarrow a + b + c\) chia hết cho 3.

Có 4 tập hợp \(\left\{ {a;b;c} \right\}\) có tổng các phần tử chia hết cho 3: \[\left\{ {1;2;3} \right\};\left\{ {2;3;4} \right\};\left\{ {3;4;5} \right\};\left\{ {1;3;5} \right\}\].

Suy ra có \(4.3! = 24\)số

Trường hợp 2:

Số cần lập có dạng \(\overline {abc5} \) với \(a;b;c \in \left\{ {0;1;2;3;4} \right\}\)

Tổng \(a + b + c + 5\)phải chia hết cho 3 \( \Rightarrow a + b + c\) chia cho 3 dư 1.

Có 3 tập hợp \(\left\{ {a;b;c} \right\}\) có tổng các phần tử chia 3 dư 1: \(\left\{ {0;1;3} \right\};\left\{ {0;3;4} \right\};\left\{ {1;2;4} \right\}\)

Có \(2.\left( {3! - 2!} \right) + 3! = 14\) số. Vậy có tất cả \(24 + 14 = 38\) số thỏa đề bài.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \({\delta _a} = \frac{{{\Delta _a}}}{{|a|}} \Rightarrow |a| = \frac{{{\Delta _a}}}{{{\delta _a}}}\).

Do \({\delta _a} \le 0,15\% ;d = 0,75\) nên \(|a| \ge \frac{{0,75}}{{0,15}}.100 = 500\).

Vậy độ dài gần đúng của cây cầu là \[500m\].

Lời giải

Trong mặt phẳng toạ độ \(Oxy\), cho tam giác \(AB (ảnh 1)

Ta có: \(AH \bot d \Rightarrow \) phương trình đường thẳng \(AH:x - y = 0\).

Gọi \(H,\,D\) lần lượt là trung điểm của \(BC,\,AH\).

Toạ độ \(D\) là nghiệm của hệ: \(\left\{ \begin{array}{l}x + y - 4 = 0\\x - y = 0\end{array} \right. \Leftrightarrow x = y = 2\). Vậy \(D\left( {2;\,2} \right) \Rightarrow H\left( { - 2; - 2} \right)\).

Do \(BC//d \Rightarrow BC\) có phương trình: \(x + y + 4 = 0\).

\(C \in BC \Rightarrow C\left( {t;\, - t - 4} \right)\) với \(t > 0\). Do \(H\) là trung điểm \(BC\) nên suy ra \(B\left( { - t - 4;\,t} \right)\).

Ta có \(\overrightarrow {AB} .\overrightarrow {CE}  = 0 \Leftrightarrow {t^2} + 2t - 8 = 0 \Rightarrow t = 2\) (do \(t > 0\)).

Vậy \(C\left( {2;\, - 6} \right)\) nên \(x_C^2 + y_C^2 = {2^2} + {\left( { - 6} \right)^2} = 40\).

Câu 4

A. \(16\).                    
B. \(11\).                  
C. \(15\).                         
D. \(12\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. 7.257.600 cách.    
B. 958.003.200 cách.                          
C. 479.001.600 cách.                          
D. 79.833.600 cách.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

a) Đối với phép đo thửa đất, sai số tương đối không vượt quá \(0,663{\rm{\% }}\).
Đúng
Sai
b) Đối với phép đo thửa đất, có sai số tương đối: \(\frac{d}{{\left| a \right|}} = \frac{{0,5}}{{75,4}} = \frac{5}{{754}}\).
Đúng
Sai
c) Đối với phép đo chiều dài cây cầu, có sai số tương đối lớn hơn \(\frac{5}{{4662}} \approx 0,107{\rm{\% }}\).
Đúng
Sai
d) Phép đo cây cầu có độ chính xác cao hơn phép đo chiều dài của một thửa đất.
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP