Câu hỏi:

17/12/2025 6 Lưu

Cho hàm số \[y = f\left( x \right) = \sin 2x\]. Các mệnh đề sau đúng hay sai?

a) \[{y^2} + {\left( {y'} \right)^2} = 4\]. 

Đúng
Sai

b) \(4y + y'' = 0\).

Đúng
Sai

c) \[4y - y'' = 0\]. 

Đúng
Sai

d) \[y = y'\tan 2x\].

Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Sai

b) Đúng

c) Sai

d) Sai

\(y' = 2\cos 2x\), \(y'' =  - 4\sin 2x\).

\[{y^2} + {\left( {y'} \right)^2} = {\sin ^2}2x + 4{\cos ^2}2x = 1 + 3{\cos ^2}2x\].

\(4y + y'' = 4\sin 2x - 4\sin 2x = 0\).

\(4y - y'' = 8\sin 2x\).

\(y'\tan 2x = 2\cos 2x.\frac{{\sin 2x}}{{\cos 2x}} = 2\sin 2x\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời: \(10,6465\) giờ.

Lời giải

\(P\left( t \right) = \frac{{1500000}}{{1 + 5000{e^{ - 0,8t}}}} \Rightarrow P'\left( t \right) = \frac{{6000000000.{e^{ - 0,8t}}}}{{{{\left( {1 + 5000{e^{ - 0,8t}}} \right)}^2}}} \le \frac{{6000000000.{e^{ - 0,8t}}}}{{4.1.5000{e^{ - 0,8t}}}} = 300000\).

Dấu bằng xảy ra khi và chỉ khi \(1 = 5000{e^{ - 0,8t}} \Leftrightarrow t \approx 10,6465\) giờ.

Câu 2

a) \({\left( {a - 10} \right)^2} = 1\).

b) \(a\) cũng là nghiệm của phương trình \({\left( {\frac{2}{3}} \right)^{\log x}} = \frac{9}{4}\).

c) \({a^2} + a + 1 = 2\).

d) \(a = {10^2}\).

Lời giải

a) Sai

b) Sai

c) Sai

d) Đúng

Điều kiện \(x > 0\).

Chia cả hai vế của phương trình cho \({3^{2\log x}}\) ta được \(4{\left( {\frac{3}{2}} \right)^{2\log x}} - {\left( {\frac{3}{2}} \right)^{\log x}} - 18 = 0\).

Đặt \(t = {\left( {\frac{3}{2}} \right)^{\log x}}\), \(t > 0\).

Ta có \(4{t^2} - t - 18 = 0\) \( \Leftrightarrow \left[ \begin{array}{l}t = \frac{9}{4}\\t =  - 2\left( L \right)\end{array} \right.\).

Với \(t = \frac{9}{4}\) \( \Rightarrow {\left( {\frac{3}{2}} \right)^{\log x}} = \frac{9}{4}\) \( \Leftrightarrow \log x = 2\) \( \Leftrightarrow x = 100\).

Vậy \(a = 100 = {10^2}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[P = {\log _2}\left( {2a{b^2}} \right)\]. 

B. \[P = {\log _2}{\left( {ab} \right)^2}\].

C. \[P = {\log _2}{\left( {\frac{a}{b}} \right)^2}\]. 
D. \[P = {\log _2}\left( {\frac{{2a}}{{{b^2}}}} \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP