Số lượng của một loại vi khuẩn được xác định bởi công thức:
\(P\left( t \right) = \frac{{1500000}}{{1 + 5000{e^{ - 0,8t}}}}\)
trong đó \(t\) là thời gian được tính bằng giờ. Hỏi vào thời gian nào thì số lượng vi khuẩn tăng nhanh nhất
Số lượng của một loại vi khuẩn được xác định bởi công thức:
\(P\left( t \right) = \frac{{1500000}}{{1 + 5000{e^{ - 0,8t}}}}\)
trong đó \(t\) là thời gian được tính bằng giờ. Hỏi vào thời gian nào thì số lượng vi khuẩn tăng nhanh nhất
Quảng cáo
Trả lời:
Đáp án:
Trả lời: \(10,6465\) giờ.
Lời giải
\(P\left( t \right) = \frac{{1500000}}{{1 + 5000{e^{ - 0,8t}}}} \Rightarrow P'\left( t \right) = \frac{{6000000000.{e^{ - 0,8t}}}}{{{{\left( {1 + 5000{e^{ - 0,8t}}} \right)}^2}}} \le \frac{{6000000000.{e^{ - 0,8t}}}}{{4.1.5000{e^{ - 0,8t}}}} = 300000\).
Dấu bằng xảy ra khi và chỉ khi \(1 = 5000{e^{ - 0,8t}} \Leftrightarrow t \approx 10,6465\) giờ.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Trả lời: \( \approx {62,7^0}\)
Lời giải
Kẻ \(BI \bot AC\)
Ta có: \(\left\{ {\begin{array}{*{20}{l}}{BI \bot AC}\\{BI \bot SA}\end{array} \Rightarrow BI \bot (SAC)} \right.\)
Ta có: \(\left\{ {\begin{array}{*{20}{l}}{(SAC) \cap (SBC) = SC}\\{{\mathop{\rm Trong}\nolimits} \,(SAC),IH \bot SC \Rightarrow [A,SC,B] = \widehat {IHB}}\\{{\mathop{\rm Trong}\nolimits} \,(SBC),BH \bot SC}\end{array}} \right.\)
Ta có:
Xét \(\Delta BH\) vuông tại \(I:\tan \widehat {BHI} = \frac{{BI}}{{HI}} = \frac{{\frac{{a\sqrt 3 }}{2}}}{{\frac{{\sqrt 5 }}{5}a}} = \frac{{\sqrt {15} }}{2} \Rightarrow \widehat {BHI} \approx {62,7^0}\)
Câu 2
a) \[{y^2} + {\left( {y'} \right)^2} = 4\].
b) \(4y + y'' = 0\).
c) \[4y - y'' = 0\].
d) \[y = y'\tan 2x\].
Lời giải
|
a) Sai |
b) Đúng |
c) Sai |
d) Sai |
\(y' = 2\cos 2x\), \(y'' = - 4\sin 2x\).
\[{y^2} + {\left( {y'} \right)^2} = {\sin ^2}2x + 4{\cos ^2}2x = 1 + 3{\cos ^2}2x\].
\(4y + y'' = 4\sin 2x - 4\sin 2x = 0\).
\(4y - y'' = 8\sin 2x\).
\(y'\tan 2x = 2\cos 2x.\frac{{\sin 2x}}{{\cos 2x}} = 2\sin 2x\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \(S = \left( {\frac{3}{4};3} \right]\).
B. \(S = \left( {\frac{3}{4}; + \infty } \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \(30\,\,{\rm{m/s}}\).
B. \(25\,\,{\rm{m/s}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.