Câu hỏi:

18/12/2025 3 Lưu

Một hộp chứa \(20\) chiếc thẻ được đánh số từ \(1\) đến 20. Rút ngẫu nhiên đồng thời \(3\) thẻ. Tính xác suất để rút được ít nhất \(1\) thẻ mang số chia hết cho \(5\).

A. \(\frac{{11}}{{19}}\).                                 
B. \(\frac{8}{{19}}\).         
C. \(\frac{{29}}{{57}}\).     
D. \(\frac{{28}}{{57}}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Rút ngẫu nhiên \(3\) thẻ trong hộp chứa \(20\) chiếc thẻ nên \(n\left( \Omega  \right) = C_{20}^3\).

Xét biến cố \(A\): “Rút được ít nhất \(1\) thẻ mang số chia hết cho \(5\)”, có biến cố đối \(\overline A \): “Rút được \(3\) thẻ đều mang số không chia hết cho \(5\)”

Trong \(20\) chiếc thẻ được đánh số từ \(1\) đến 20 có \(4\) thẻ ghi số chia hết cho \(5\) và \(16\) thẻ ghi số không chia hết cho \(5\) nên \(n\left( {\overline A } \right) = C_{16}^3\). Vậy \(P\left( {\overline A } \right) = \frac{{n\left( {\overline A } \right)}}{{n\left( \Omega  \right)}} = \frac{{C_{16}^3}}{{C_{20}^3}} = \frac{{28}}{{57}} \Rightarrow P\left( A \right) = 1 - P\left( {\overline A } \right) = \frac{{29}}{{57}}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi số tự nhiên có \(4\) chữ số đôi một khác nhau là \(\overline {abcd} ;a \ne 0\).

Trường hợp 1: Số được lập có \(4\) chữ số chẵn, có \(4! = 24\) (số).

Trường hợp 2: Số được lập có \(1\) chữ số lẻ và \(3\) chữ số chẵn:

Chọn 1 số lẻ có 5 cách

Chọn vị trí cho số lẻ có 4 cách

Chọn 3 số chẵn từ 4 số chẵn và xếp vào 3 vị trí có: \(A_4^3\) cách

Suy ra, có \(5.4.A_4^3 = 480\) (số).

Trường hợp 3: Số được lập có 2 chữ số lẻ và \(2\) chữ số chẵn,

Chọn vị trí cho hai số lẻ có 3 cách (hai số lẻ xếp vào các vị trí: ac;bd;ad)

Chọn 2 số lẻ từ 5 số lẻ và xếp vào 2 vị trí có: \(A_5^2\) cách

Chọn 2 số chẵn từ 4 số chẵn và xếp vào 2 vị trí còn lại có: \(A_4^2\) cách

Suy ra, có \(3.A_5^2.A_4^2 = 720\) (số).

Do đó, số các số tự nhiên có \(4\) chữ số đôi một khác nhau và không có hai chữ số liên tiếp nào cùng lẻ là: \(24 + 480 + 720 = 1224\).

Lời giải

Tổng số học sinh là \(40\) học sinh nên dãy số liệu trên khi sắp xếp theo thứ tự không giảm là: \(3\); \(3\); \(4\); \(4\); \(4\); \(5\); \(5\); \(5\); \(5\); \(5\); \(5\); \(5\); \(6\); \(6\); \(6\); \(6\); \(6\); \(6\); \(6\); \(6\); \(7\); \(7\); \(7\); \(7\); \(7\); \(7\); \(7\); \(7\); \(7\); \(8\); \(8\); \(8\); \(8\); \(8\); \(8\); \(9\); \(9\); \(9\); \(9\); \(10\).

Vị trí thứ \(20\) là \(6\) và vị trí thứ \(21\) trong dãy số liệu là \(7\) nên trung vị là \[\frac{{6 + 7}}{2} = 6,5\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{5} = 1\].                              
B. \[\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{{20}} = 1\].                             
C. \[\frac{{{x^2}}}{{25}} - \frac{{{y^2}}}{5} = 1\].                              
D. \[\frac{{{x^2}}}{{25}} - \frac{{{y^2}}}{{20}} = 1\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP