Câu hỏi:

18/12/2025 9 Lưu

Cho đường thẳng \[{\Delta _m}:\left( {m - 2} \right)x + \left( {m + 1} \right)y - 5m + 1 = 0\] với \[m\] là tham số, và điểm \[A\left( { - 3;9} \right)\]. Giả sử \[m = \frac{a}{b}\] (là phân số tối giản) để khoảng cách từ \[A\] đến đường thẳng \[{\Delta _m}\] là lớn nhất. Khi đó hãy tính giá trị của biểu thức \[S = 2a - b.\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có \({\Delta _m}:\left( {m - 2} \right)x + \left( {m + 1} \right)y - 5m + 1 = 0 \Leftrightarrow m\left( {x + y - 5} \right) + \left( { - 2x + y + 1} \right) = 0\)

Khi đó, \({\Delta _m}\) luôn đi qua điểm cố định \(M\left( {2;3} \right)\).

Gọi \(d = d\left( {A,{\Delta _m}} \right) = AH,H \in {\Delta _m}\) \( \Rightarrow d \le AM\).

\( \Rightarrow d\) lớn nhất khi \(H \equiv M\) hay \(M\) là hình chiếu của \(A\) trên \(\Delta \).

Ta có \(\overrightarrow {AM} \left( {5; - 6} \right)\) và \({\Delta _m}\) có vectơ chỉ phương \(\overrightarrow u \left( {m + 1;2 - m} \right)\).

Đường thẳng \(AM \bot {\Delta _m}\) \( \Leftrightarrow \overrightarrow {AM} .\overrightarrow u  = 0\)

\( \Leftrightarrow 5\left( {m + 1} \right) - 6\left( {2 - m} \right) = 0 \Leftrightarrow 11m - 7 = 0 \Leftrightarrow m = \frac{7}{{11}} \Rightarrow S = 2a - b = 2.7 - 11 = 3\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi số tự nhiên có \(4\) chữ số đôi một khác nhau là \(\overline {abcd} ;a \ne 0\).

Trường hợp 1: Số được lập có \(4\) chữ số chẵn, có \(4! = 24\) (số).

Trường hợp 2: Số được lập có \(1\) chữ số lẻ và \(3\) chữ số chẵn:

Chọn 1 số lẻ có 5 cách

Chọn vị trí cho số lẻ có 4 cách

Chọn 3 số chẵn từ 4 số chẵn và xếp vào 3 vị trí có: \(A_4^3\) cách

Suy ra, có \(5.4.A_4^3 = 480\) (số).

Trường hợp 3: Số được lập có 2 chữ số lẻ và \(2\) chữ số chẵn,

Chọn vị trí cho hai số lẻ có 3 cách (hai số lẻ xếp vào các vị trí: ac;bd;ad)

Chọn 2 số lẻ từ 5 số lẻ và xếp vào 2 vị trí có: \(A_5^2\) cách

Chọn 2 số chẵn từ 4 số chẵn và xếp vào 2 vị trí còn lại có: \(A_4^2\) cách

Suy ra, có \(3.A_5^2.A_4^2 = 720\) (số).

Do đó, số các số tự nhiên có \(4\) chữ số đôi một khác nhau và không có hai chữ số liên tiếp nào cùng lẻ là: \(24 + 480 + 720 = 1224\).

Lời giải

Tổng số học sinh là \(40\) học sinh nên dãy số liệu trên khi sắp xếp theo thứ tự không giảm là: \(3\); \(3\); \(4\); \(4\); \(4\); \(5\); \(5\); \(5\); \(5\); \(5\); \(5\); \(5\); \(6\); \(6\); \(6\); \(6\); \(6\); \(6\); \(6\); \(6\); \(7\); \(7\); \(7\); \(7\); \(7\); \(7\); \(7\); \(7\); \(7\); \(8\); \(8\); \(8\); \(8\); \(8\); \(8\); \(9\); \(9\); \(9\); \(9\); \(10\).

Vị trí thứ \(20\) là \(6\) và vị trí thứ \(21\) trong dãy số liệu là \(7\) nên trung vị là \[\frac{{6 + 7}}{2} = 6,5\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \[\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{5} = 1\].                              
B. \[\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{{20}} = 1\].                             
C. \[\frac{{{x^2}}}{{25}} - \frac{{{y^2}}}{5} = 1\].                              
D. \[\frac{{{x^2}}}{{25}} - \frac{{{y^2}}}{{20}} = 1\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP