Câu hỏi:

18/12/2025 33 Lưu

Cho \(\int\limits_0^{\ln 2} {\frac{{{e^x}dx}}{{{e^x} + 3}}} = a\ln 2 + b\ln 5\) với \(a,b \in \mathbb{Z}\). Giá trị của \(a + b\) bằng bao nhiêu?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:

−1

Trả lời: −1

Ta có \(\int\limits_0^{\ln 2} {\frac{{{e^x}dx}}{{{e^x} + 3}}} = \int\limits_0^{\ln 2} {\frac{{d\left( {{e^x} + 3} \right)}}{{{e^x} + 3}}} = \left. {\ln \left| {{e^x} + 3} \right|} \right|_0^{\ln 2}\)\( = \ln 5 - \ln 4\)\( = \ln 5 - 2\ln 2\).

Suy ra \(a = - 2;b = 1\). Do đó \(a + b = - 1\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời: 4

Hình phẳng đã cho được giới hạn bởi các đồ thị hàm số \(y = \cos x,\,y = x\) và hai đường thẳng \(x = 1,\,x = 3\). Khi đó diện tích hình phẳng được tính theo công thức

\(S = \int\limits_1^3 {\left| {\cos x - x} \right|{\rm{d}}x} \). Vì \(x \ge \cos x,\,\forall x \in \left[ {1;3} \right]\) nên ta có:

\(S = \int\limits_1^3 {\left( {x - \cos x} \right){\rm{d}}x} = \left. {\left( {\frac{{{x^2}}}{2} - \sin x} \right)} \right|_1^3 = 4 - \sin 3 + \sin 1 \approx 4\).

Lời giải

Đáp án đúng là: B

Do \[\int {f\left( t \right)dt} = \int {{{480.2}^t}\ln 2{\rm{ }}dt} = 480.\ln 2.\frac{{{2^t}}}{{\ln 2}} + C = {480.2^t} + C = F(t)\].

Biết tại thời điểm bắt đầu quan sát, số lượng cá thể được ước tính một cách chính xác khoảng 480 cá thể nên

\[F(0) = {480.2^0} + C = 480 \Rightarrow C = 0\]. Suy ra \[F\left( t \right) = {480.2^t}\].

Câu 4

a) Xác suất để một máy bay đến đúng giờ biết rằng nó đã khởi hành đúng giờ là 0,94.
Đúng
Sai
b) Xác suất để một máy bay khởi hành đúng giờ biết rằng nó sẽ đến đúng giờ là 0,85.
Đúng
Sai
c) Xác suất để một máy bay đến đúng giờ biết rằng nó khởi hành không đúng giờ là 0,24.
Đúng
Sai
d) Xác suất để một máy bay khởi hành đúng giờ biết rằng nó sẽ đến không đúng giờ là 0,95.
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[S = \int\limits_{ - 1}^{ - 0,5} {f\left( x \right)dx} \].                                             
B. \[S = \int\limits_{ - 1}^0 {f\left( x \right)dx} \].                 
C. \[S = - \left| {\int\limits_1^{ - 0,5} {f\left( x \right)dx} } \right|\].                                                       
D.\[S = - \int\limits_{ - 1}^{0,5} {f\left( x \right)dx} \].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(V = \pi \int\limits_b^a {{{\left[ {f\left( x \right)} \right]}^2}{\rm{d}}x} \).                            
B. \(V = \int\limits_a^b {\left| {f\left( x \right)} \right|{\rm{d}}x} \).     
C. \(V = \int\limits_a^b {{{\left[ {f\left( x \right)} \right]}^2}{\rm{d}}x} \).                            
D. \(V = \pi \int\limits_a^b {{{\left[ {f\left( x \right)} \right]}^2}{\rm{d}}x} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[f\left( x \right) = \frac{{{x^4}}}{4} + C\].                              

B. \[f\left( x \right) = 3{x^2}\].                      
C. \[f\left( x \right) = 4{x^3}\].                      
D. \[f\left( x \right) = 3{x^4}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP