Câu hỏi:

24/12/2025 37 Lưu

Cho \(\int\limits_1^2 {f\left( x \right)dx = - 1} \), \(\int\limits_1^2 {\left( {f\left( x \right) + g\left( x \right)} \right)dx = 2} \). Khi đó \(\int\limits_1^2 {g\left( x \right)dx} \) bằng    

A. \( - 1\).                
B. \(1\).                    
C. \( - 3\).                               
D. \(3\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: D

Ta có \(\int\limits_1^2 {\left( {f\left( x \right) + g\left( x \right)} \right)dx = 2} \)\( \Leftrightarrow \int\limits_1^2 {f\left( x \right)dx + \int\limits_1^2 {g\left( x \right)dx} } = 2\)

\( \Leftrightarrow - 1 + \int\limits_1^2 {g\left( x \right)dx} = 2 \Leftrightarrow \int\limits_1^2 {g\left( x \right)dx} = 3\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời: 0

Ta có: \(\int\limits_1^5 {f\left( x \right)} {\rm{d}}x = \int\limits_1^2 {f\left( x \right)} {\rm{d}}x + \int\limits_2^3 {f\left( x \right)} {\rm{d}}x + \int\limits_3^4 {f\left( x \right)} {\rm{d}}x + \int\limits_4^5 {f\left( x \right)} {\rm{d}}x\)

\( = \int\limits_1^2 {\left| {f\left( x \right)} \right|} {\rm{d}}x - \int\limits_2^3 {\left| {f\left( x \right)} \right|} {\rm{d}}x + \int\limits_3^4 {\left| {f\left( x \right)} \right|} {\rm{d}}x - \int\limits_4^5 {\left| {f\left( x \right)} \right|} {\rm{d}}x\)

\( = {S_{{H_1}}} - {S_{{H_2}}} + {S_{{H_3}}} - {S_{{H_4}}} = \frac{9}{4} - \frac{{11}}{{12}} + \frac{{11}}{{12}} - \frac{9}{4} = 0\).

Lời giải

Trả lời: 425

Dựa vào hình vẽ, ta thấy đồ thị hàm số \(\left( P \right):y = a{x^2} + bx + c\) đi qua các điểm \(\left( {0;40} \right),\left( {50;30} \right),\left( { - 50;30} \right)\) nên ta có hệ

\(\left\{ \begin{array}{l}2500a + 50b + c = 30\\2500a - 50b + c = 30\\c = 40\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = - \frac{1}{{250}}\\b = 0\\c = 40\end{array} \right.\). Suy ra \(\left( P \right):y = - \frac{1}{{250}}{x^2} + 40\).

Ta có \(V = \pi \int\limits_{ - 50}^{50} {{{\left( { - \frac{1}{{250}}{x^2} + 40} \right)}^2}dx} \approx 425162\;{\rm{c}}{{\rm{m}}^{\rm{3}}} \approx 425\) lít.

Câu 3

 A. \(\int {\sin x{\rm{d}}x = \cos x + C} \).        
B. \(\int {\frac{1}{{{{\sin }^2}x}}} {\rm{d}}x = - \cot x + C\).    
C. \(\int {\frac{1}{{{{\cos }^2}x}}} {\rm{d}}x = \tan x + C\).    
D. \(\int {\cos x{\rm{d}}x = \sin x + C} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\frac{{{\pi ^2}}}{2}\).                      
B. \(2\pi \). 
C. \(\frac{{8\pi - {\pi ^2}}}{2}\).           
D. \(\frac{{{\pi ^2} + 2\pi }}{2}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

a) Xác suất để lần thứ nhất lấy được viên bi đỏ là \(\frac{1}{5}\).
Đúng
Sai
b) Xác suất để lần thứ hai lấy được viên bi đỏ, biết lần thứ nhất lấy được viên bi đỏ là \(\frac{3}{{23}}\).
Đúng
Sai
c) Xác suất để cả hai lần đều lấy được viên bi đỏ là \(\frac{1}{{46}}\).
Đúng
Sai
d) Xác suất để ít nhất một lần lấy được viên bi xanh là \(\frac{{45}}{{46}}\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP