Câu hỏi:

18/12/2025 5 Lưu

Họ nguyên hàm của hàm số \(f\left( x \right) = 2x + \frac{1}{x}\)    

A. \(2 - \frac{1}{{{x^2}}} + C\).             
B. \({x^2} - \frac{1}{{{x^2}}} + C\).                             
C. \({x^2} + \ln |x| + C\).                           
D. \(2x - \ln |x| + C\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: C

Ta có \(\int {\left( {2x + \frac{1}{x}} \right){\rm{d}}x} = 2\int {x{\rm{d}}x + \int {\frac{1}{x}} } {\rm{d}}x = {x^2} + \ln |x| + C\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

a) Hình phẳng \(\left( H \right)\) giới hạn bởi đồ thị các hàm số \(y = {x^2} - 2x - 1,y = - {x^2} + 3\) và hai đường thẳng \(x = - 1;x = 2\).
Đúng
Sai
b) Diện tích hình phẳng \(\left( H \right)\)\(S = \int\limits_{ - 1}^2 {\left| {\left( { - {x^2} + 3} \right) - \left( {{x^2} - 2x - 1} \right)} \right|dx} \).
Đúng
Sai
c) Diện tích hình phẳng \(\left( H \right)\)\(S = 2\int\limits_{ - 1}^2 {\left( {{x^2} - x - 2} \right)dx} \).
Đúng
Sai
d) Nếu \(\ln S = a\ln b\) (với \(a,b\) là các số nguyên tố) thì \({a^2} + {b^2} = 29\).
Đúng
Sai

Lời giải

a) Đ, b) Đ, c) S, d) S

a) Hình phẳng \(\left( H \right)\) giới hạn bởi đồ thị các hàm số \(y = {x^2} - 2x - 1,y = - {x^2} + 3\) và hai đường thẳng \(x = - 1;x = 2\).

b) \(S = \int\limits_{ - 1}^2 {\left| {\left( { - {x^2} + 3} \right) - \left( {{x^2} - 2x - 1} \right)} \right|dx} \).

c) \(S = \int\limits_{ - 1}^2 {\left| {\left( { - {x^2} + 3} \right) - \left( {{x^2} - 2x - 1} \right)} \right|dx} = \int\limits_{ - 1}^2 {\left( { - 2{x^2} + 2x + 4} \right)dx} \).

d) \(S = \int\limits_{ - 1}^2 {\left( { - 2{x^2} + 2x + 4} \right)dx} = 9\).

Suy ra \(\ln 9 = 2\ln 3\). Khi đó \({a^2} + {b^2} = {2^2} + {3^2} = 13\).

Lời giải

Trả lời: −367

Phương trình đường thẳng d là: \(\left\{ \begin{array}{l}x = - 688 + 91t\\y = - 185 + 75t\\z = 8\end{array} \right.\).

Giả sử M là vị trí sớm nhất mà máy bay xuất hiện trên màn hình ra đa.

Suy ra \(M \in d\)\( \Rightarrow M\left( { - 688 + 91t; - 185 + 75t;8} \right)\).

\(OM = 417\) nên \(\sqrt {{{\left( { - 688 + 91t} \right)}^2} + {{\left( { - 185 + 75t} \right)}^2} + 64} = 417\)

\( \Leftrightarrow {\left( { - 688 + 91t} \right)^2} + {\left( { - 185 + 75t} \right)^2} + 64 = {417^2}\)

\( \Leftrightarrow 13906{t^2} - 152966t + 333744 = 0\)

\( \Leftrightarrow t = 8\) hoặc \(t = 3\).

Với \(t = 8\) thì \(M\left( {40;415;8} \right)\)\( \Rightarrow AM = \sqrt {{{\left( {40 + 688} \right)}^2} + {{\left( {415 + 185} \right)}^2} + {{\left( {8 - 8} \right)}^2}} \approx 943,4\).

Với \(t = 3\) thì \(M\left( { - 415;40;8} \right)\)\( \Rightarrow AM = \sqrt {{{\left( { - 415 + 688} \right)}^2} + {{\left( {40 + 185} \right)}^2} + {{\left( {8 - 8} \right)}^2}} \approx 353,8\).

\(353,8 < 943,4\) nên tọa độ điểm M xuất hiện sớm nhất trên ra đa là \(M\left( { - 415;40;8} \right)\).

Suy ra \(a + b + c = - 415 + 40 + 8 = - 367\).

Câu 3

A. \(4\).                   
B. \(6\).                    
C. \(5\).                             
D. \(3\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

a) Vectơ \(\overrightarrow u = \left( { - 2;2;1} \right)\) là một vectơ chỉ phương của \(\Delta \).
Đúng
Sai
b) Góc giữa hai mặt phẳng \(\left( P \right)\)\(\left( {Oyz} \right)\) bằng \(45^\circ \).
Đúng
Sai
c) Đường thẳng đi qua \(N\left( {2;3; - 4} \right)\) và song song với \(\Delta \) có phương trình là \(\frac{{x - 2}}{{ - 2}} = \frac{{y - 3}}{2} = \frac{{z + 4}}{1}.\)
Đúng
Sai
d) Đường thẳng \(d\) vuông góc \(\Delta \) và tạo với \(\left( P \right)\) một góc \(45^\circ \) có một vectơ chỉ phương là \(\overrightarrow {{u_1}} = \left( {1; - 2;4} \right)\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

a) Đường kính mặt cầu bằng 8.
Đúng
Sai
b) Mặt cầu \(\left( S \right)\) đi qua điểm \(A\left( { - 1;3;0} \right)\).
Đúng
Sai
c) Khoảng cách từ tâm mặt cầu đến mặt phẳng \(\left( {Oyz} \right)\) bằng 2.
Đúng
Sai
d) Mặt phẳng \(\left( P \right)\) có phương trình \(x + 2y - 2z - 2 = 0\) tiếp xúc với mặt cầu \(\left( S \right)\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP