Câu hỏi:

19/12/2025 58 Lưu

Biết giá trị tích phân \(I = \int\limits_1^2 {\sqrt[5]{{{x^2}}}dx} \) có dạng \(\frac{{2a\sqrt[5]{b} - a}}{7}\) với \(a,b \in \mathbb{Z}\). Tính \(S = {a^2} + {b^2}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:

41

Trả lời: 41

\(I = \int\limits_1^2 {\sqrt[5]{{{x^2}}}dx} = \int\limits_1^2 {{x^{\frac{2}{5}}}dx} \)\[ = \left. {\frac{5}{7}{x^{\frac{7}{5}}}} \right|_1^2 = \frac{{5\sqrt[5]{{128}} - 5}}{7} = \frac{{10\sqrt[5]{4} - 5}}{7}\].

Suy ra \(a = 5;b = 4\). Vậy \(S = {a^2} + {b^2} = 41\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời: 1,41

Phương trình mặt phẳng \(\left( {ABC} \right)\) là: \(\frac{x}{3} + \frac{y}{{1,5}} + \frac{z}{{ - 1,5}} = 1\)\( \Leftrightarrow x + 2y - 2z - 3 = 0\).

Đường thẳng \(MN\) qua \(M\left( {5;2;4} \right)\) và nhận \(\overrightarrow u = - \frac{1}{2}\overrightarrow {MN} = \left( {2;1;3} \right)\) làm vectơ chỉ phương có phương trình là: \(\left\{ \begin{array}{l}x = 5 + 2t\\y = 2 + t\\z = 4 + 3t\end{array} \right.\).

Tọa độ điểm H va chạm của mục tiêu tới mặt phẳng là nghiệm của hệ

x=5+2ty=2+tz=4+3tx+2y2z3=0 x=5+2ty=2+tz=4+3t5+2t+4+2t86t3=0 x=3y=1z=1t=1 . Suy ra H3;1;1

Ta có \(AH = \sqrt {{0^2} + {1^2} + {1^2}} = \sqrt 2 \approx 1,41\).

Câu 2

a) Hình phẳng \(\left( H \right)\) giới hạn bởi đồ thị các hàm số \(y = {x^2} - 2x - 1,y = - {x^2} + 3\) và hai đường thẳng \(x = - 1;x = 2\).
Đúng
Sai
b) Diện tích hình phẳng \(\left( H \right)\)\(S = \int\limits_{ - 1}^2 {\left| {\left( { - {x^2} + 3} \right) - \left( {{x^2} - 2x - 1} \right)} \right|dx} \).
Đúng
Sai
c) Diện tích hình phẳng \(\left( H \right)\)\(S = 2\int\limits_{ - 1}^2 {\left( {{x^2} - x - 2} \right)dx} \).
Đúng
Sai
d) Nếu \(\ln S = a\ln b\) (với \(a,b\) là các số nguyên tố) thì \({a^2} + {b^2} = 29\).
Đúng
Sai

Lời giải

a) Đ, b) Đ, c) S, d) S

a) Hình phẳng \(\left( H \right)\) giới hạn bởi đồ thị các hàm số \(y = {x^2} - 2x - 1,y = - {x^2} + 3\) và hai đường thẳng \(x = - 1;x = 2\).

b) \(S = \int\limits_{ - 1}^2 {\left| {\left( { - {x^2} + 3} \right) - \left( {{x^2} - 2x - 1} \right)} \right|dx} \).

c) \(S = \int\limits_{ - 1}^2 {\left| {\left( { - {x^2} + 3} \right) - \left( {{x^2} - 2x - 1} \right)} \right|dx} = \int\limits_{ - 1}^2 {\left( { - 2{x^2} + 2x + 4} \right)dx} \).

d) \(S = \int\limits_{ - 1}^2 {\left( { - 2{x^2} + 2x + 4} \right)dx} = 9\).

Suy ra \(\ln 9 = 2\ln 3\). Khi đó \({a^2} + {b^2} = {2^2} + {3^2} = 13\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(2x + 2y + z + 3 = 0\).                       
B. \(x - 2y - z = 0\).                                                                   
C. \(2x + 2y + z - 3 = 0\).                        
D. \(x - 2y - z - 2 = 0\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

a) Vectơ \(\overrightarrow u = \left( { - 2;2;1} \right)\) là một vectơ chỉ phương của \(\Delta \).
Đúng
Sai
b) Góc giữa hai mặt phẳng \(\left( P \right)\)\(\left( {Oyz} \right)\) bằng \(45^\circ \).
Đúng
Sai
c) Đường thẳng đi qua \(N\left( {2;3; - 4} \right)\) và song song với \(\Delta \) có phương trình là \(\frac{{x - 2}}{{ - 2}} = \frac{{y - 3}}{2} = \frac{{z + 4}}{1}.\)
Đúng
Sai
d) Đường thẳng \(d\) vuông góc \(\Delta \) và tạo với \(\left( P \right)\) một góc \(45^\circ \) có một vectơ chỉ phương là \(\overrightarrow {{u_1}} = \left( {1; - 2;4} \right)\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP