Một doanh nghiệp có 45% nhân viên là nữ. Tỉ lệ nhân viên nữ và tỉ lệ nhân viên nam mua bảo hiểm nhân thọ lần lượt là 7% và 5%. Gặp ngẫu nhiên một nhân viên của doanh nghiệp. Biết rằng nhân viên đó có mua bảo hiểm nhân thọ. Xác suất nhiên viên đó là nam bằng bao nhiêu? (làm tròn kết quả đến hàng phần mười).
Một doanh nghiệp có 45% nhân viên là nữ. Tỉ lệ nhân viên nữ và tỉ lệ nhân viên nam mua bảo hiểm nhân thọ lần lượt là 7% và 5%. Gặp ngẫu nhiên một nhân viên của doanh nghiệp. Biết rằng nhân viên đó có mua bảo hiểm nhân thọ. Xác suất nhiên viên đó là nam bằng bao nhiêu? (làm tròn kết quả đến hàng phần mười).
Câu hỏi trong đề: Bộ 10 đề thi cuối kì 2 Toán 12 Cánh diều có đáp án !!
Quảng cáo
Trả lời:
Đáp án:
Trả lời: 0,5
Gọi A là biến cố “Nhân viên đó là nhân viên nữ”.
B là biến cố “Nhân viên đó mua bảo hiểm nhân thọ”.
Theo đề ta có \(P\left( A \right) = 0,45 \Rightarrow P\left( {\overline A } \right) = 0,55\);\(P\left( {B|A} \right) = 0,07;P\left( {B|\overline A } \right) = 0,05\).
Ta có \(P\left( B \right) = P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B|\overline A } \right)\)\( = 0,45.0,07 + 0,55.0,05 = 0,059\).
Có \(P\left( {\overline A |B} \right) = \frac{{P\left( {\overline A } \right).P\left( {B|\overline A } \right)}}{{P\left( B \right)}} = \frac{{0,55.0,05}}{{0,059}} \approx 0,5\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
a) Đ, b) Đ, c) S, d) S
a) Hình phẳng \(\left( H \right)\) giới hạn bởi đồ thị các hàm số \(y = {x^2} - 2x - 1,y = - {x^2} + 3\) và hai đường thẳng \(x = - 1;x = 2\).
b) \(S = \int\limits_{ - 1}^2 {\left| {\left( { - {x^2} + 3} \right) - \left( {{x^2} - 2x - 1} \right)} \right|dx} \).
c) \(S = \int\limits_{ - 1}^2 {\left| {\left( { - {x^2} + 3} \right) - \left( {{x^2} - 2x - 1} \right)} \right|dx} = \int\limits_{ - 1}^2 {\left( { - 2{x^2} + 2x + 4} \right)dx} \).
d) \(S = \int\limits_{ - 1}^2 {\left( { - 2{x^2} + 2x + 4} \right)dx} = 9\).
Suy ra \(\ln 9 = 2\ln 3\). Khi đó \({a^2} + {b^2} = {2^2} + {3^2} = 13\).
Lời giải
Trả lời: −367
Phương trình đường thẳng d là: \(\left\{ \begin{array}{l}x = - 688 + 91t\\y = - 185 + 75t\\z = 8\end{array} \right.\).
Giả sử M là vị trí sớm nhất mà máy bay xuất hiện trên màn hình ra đa.
Suy ra \(M \in d\)\( \Rightarrow M\left( { - 688 + 91t; - 185 + 75t;8} \right)\).
Vì \(OM = 417\) nên \(\sqrt {{{\left( { - 688 + 91t} \right)}^2} + {{\left( { - 185 + 75t} \right)}^2} + 64} = 417\)
\( \Leftrightarrow {\left( { - 688 + 91t} \right)^2} + {\left( { - 185 + 75t} \right)^2} + 64 = {417^2}\)
\( \Leftrightarrow 13906{t^2} - 152966t + 333744 = 0\)
\( \Leftrightarrow t = 8\) hoặc \(t = 3\).
Với \(t = 8\) thì \(M\left( {40;415;8} \right)\)\( \Rightarrow AM = \sqrt {{{\left( {40 + 688} \right)}^2} + {{\left( {415 + 185} \right)}^2} + {{\left( {8 - 8} \right)}^2}} \approx 943,4\).
Với \(t = 3\) thì \(M\left( { - 415;40;8} \right)\)\( \Rightarrow AM = \sqrt {{{\left( { - 415 + 688} \right)}^2} + {{\left( {40 + 185} \right)}^2} + {{\left( {8 - 8} \right)}^2}} \approx 353,8\).
Vì \(353,8 < 943,4\) nên tọa độ điểm M xuất hiện sớm nhất trên ra đa là \(M\left( { - 415;40;8} \right)\).
Suy ra \(a + b + c = - 415 + 40 + 8 = - 367\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
