Trong không gian với hệ trục tọa độ \(Oxyz\), cho mặt phẳng \(\left( P \right)\) có phương trình \(3x + 4y + 2z + 4 = 0\) và điểm \(A\left( {1; - 2;3} \right)\). Tính khoảng cách d từ \(A\) đến \(\left( P \right)\).
Câu hỏi trong đề: Bộ 10 đề thi cuối kì 2 Toán 12 Cánh diều có đáp án !!
Quảng cáo
Trả lời:
Đáp án đúng là: D
Ta có \(d = d\left( {A,\left( P \right)} \right) = \frac{{\left| {3.1 + 4.\left( { - 2} \right) + 2.3 + 4} \right|}}{{\sqrt {{3^2} + {4^2} + {2^2}} }} = \frac{5}{{\sqrt {29} }}\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
a) Đ, b) S, c) S, d) Đ
a) Đường thẳng \({d_1}\) có vectơ chỉ phương là \(\overrightarrow {{u_1}} = \left( {1; - 1;1} \right)\).
b) Ta có \(\overrightarrow {{u_2}} = \left( {3;3; - 1} \right)\) là một vectơ chỉ phương của đường thẳng \({d_2}\).
Mặt phẳng đi qua điểm \(A\left( {1; - 1;3} \right)\) và vuông góc với đường thẳng \({d_2}\) nhận vectơ \(\overrightarrow {{u_2}} = \left( {3;3; - 1} \right)\) làm vectơ pháp tuyến có phương trình là \(3\left( {x - 1} \right) + 3\left( {y + 1} \right) - \left( {z - 3} \right) = 0\)\( \Leftrightarrow 3x + 3y - z + 3 = 0\).
c) Giả sử \(d \cap {d_1} = M\). Khi đó \(M\left( {2 + t; - 1 - t;1 + t} \right)\).
Đường thẳng \(d\) nhận \(\overrightarrow {AM} = \left( {1 + t; - t;t - 2} \right)\) làm vectơ chỉ phương.
Lại có \(d \bot {d_2}\) nên \(\overrightarrow {AM} .\overrightarrow {{u_2}} = 0 \Leftrightarrow \left( {1 + t} \right).3 + \left( { - t} \right).3 + \left( {t - 2} \right).\left( { - 1} \right) = 0\)\( \Leftrightarrow t = 5\).
Suy ra \(\overrightarrow {AM} = \left( {6; - 5;3} \right)\).
d) Đường thẳng \(d\) đi qua điểm \(A\left( {1; - 1;3} \right)\) và có một vectơ chỉ phương \(\overrightarrow {AM} = \left( {6; - 5;3} \right)\) có phương trình là \(\frac{{x - 1}}{6} = \frac{{y + 1}}{{ - 5}} = \frac{{z - 3}}{3}\).
Thay tọa độ điểm \(K\left( {13; - 11;9} \right)\) vào phương trình đường thẳng d ta được
\(\frac{{13 - 1}}{6} = \frac{{ - 11 + 1}}{{ - 5}} = \frac{{9 - 3}}{3}\) (đúng). Do đó đường thẳng \(d\) đi qua điểm \(K\left( {13; - 11;9} \right)\).
Câu 2
Lời giải
a) Đ, b) Đ, c) S, d) Đ
a) Vận tốc của vật tại thời điểm \(t\) giây là \(v\left( t \right) = \int {a\left( t \right)dt} \).
b) \(v\left( t \right) = \int {\frac{1}{{{t^2} + 3t + 2}}dt} \)\( = \int {\frac{1}{{\left( {t + 1} \right)\left( {t + 2} \right)}}dt} \)\( = \int {\left( {\frac{1}{{t + 1}} - \frac{1}{{t + 2}}} \right)dt} \)\( = \ln \left| {\frac{{t + 1}}{{t + 2}}} \right| + C\).
Mà \({v_0} = 3\ln 2\left( {{\rm{m/s}}} \right)\) nên \(\ln \frac{1}{2} + C = 3\ln 2 \Rightarrow C = 4\ln 2\).
Do đó \(v\left( t \right) = \ln \left| {\frac{{t + 1}}{{t + 2}}} \right| + 4\ln 2\).
c) Có \(v\left( {10} \right) = \ln \frac{{11}}{{12}} + 4\ln 2 \approx 2,69\;{\rm{m/s}}\).
d) \(v\left( t \right) = \ln \left| {\frac{{t + 1}}{{t + 2}}} \right| + 4\ln 2 = 4\ln 2\)\( \Rightarrow \ln \left| {\frac{{t + 1}}{{t + 2}}} \right| = 0\)\( \Rightarrow \left| {\frac{{t + 1}}{{t + 2}}} \right| = 1\)\( \Rightarrow \left[ \begin{array}{l}\frac{{t + 1}}{{t + 2}} = 1\\\frac{{t + 1}}{{t + 2}} = - 1\end{array} \right.\) vô nghiệm.
Do đó không có thời điểm nào vận tốc của vật đạt \(v = 4\ln 2\;\left( {{\rm{m/s}}} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
