Câu hỏi:

19/12/2025 4 Lưu

Một xưởng máy sử dụng một loại linh kiện được sản xuất từ hai cơ sở I và II. Số linh kiện do cơ sở I sản xuất chiếm \(61\)%, số linh kiện do cơ sở II sản xuất chiếm \(39\)%. Tỉ lệ linh kiện đạt tiêu chuẩn của cơ sở I, cơ sở II lần lượt là 93%, 82%. Kiểm tra ngẫu nhiên 1 linh kiện ở xưởng máy. Xét các biến cố:

\({A_1}\): “Linh kiện được kiểm tra do cơ sở I sản xuất”;

\({A_2}\): “Linh kiện được kiểm tra do cơ sở II sản xuất”;

\(B\): “Linh kiện được kiểm tra đạt tiêu chuẩn”.

a) \(P\left( {{A_1}} \right) = 0,39.\)
Đúng
Sai
b) \(P\left( {B|{A_2}} \right) = 0,82.\)
Đúng
Sai
c) \(P\left( B \right) = 0,8871.\)
Đúng
Sai
d) \(P\left( {{A_1}|B} \right) = 0,55.\)
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) S, b) Đ, c) Đ, d) S

a) Do \({\rm{P}}\left( {{A_1}} \right) = 0,61\).

b) \({\rm{P}}\left( {B\mid {A_2}} \right) = \frac{{{\rm{P}}\left( {B \cap {A_2}} \right)}}{{{\rm{P}}\left( {{A_2}} \right)}} = 0,82\).

c)  Ta có: \({\rm{P}}\left( {{A_1}} \right) = 0,61;{\rm{P}}\left( {{A_2}} \right) = 0,39;{\rm{P}}\left( {B\mid {A_1}} \right) = 0,93;{\rm{P}}\left( {B\mid {A_2}} \right) = 0,82\).

Theo công thức xác suất toàn phần, ta có:

\({\rm{P}}\left( B \right) = {\rm{P}}\left( {{A_1}} \right){\rm{.P}}\left( {B\mid {A_1}} \right) + {\rm{P}}\left( {{A_2}} \right){\rm{.P}}\left( {B\mid {A_2}} \right) = 0,61.0,93 + 0,39.0,82 = 0,8871\).

d) Theo công thức Bayes, ta có: \({\rm{P}}\left( {{A_1}\mid B} \right) = \frac{{{\rm{P}}\left( {{A_1}} \right){\rm{.P}}\left( {B\mid {A_1}} \right)}}{{{\rm{P}}\left( B \right)}} = \frac{{0,61 \cdot 0,93}}{{0,8871}} \approx 0,64\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

a) Đường thẳng \({d_1}\) có vectơ chỉ phương là \(\overrightarrow {{u_1}} = \left( {1; - 1;1} \right)\).
Đúng
Sai
b) Mặt phẳng đi qua điểm \(A\) và vuông góc với đường thẳng \({d_2}\) có phương trình là \(3x + 3y + z - 3 = 0\).
Đúng
Sai
c) Đường thẳng \(d\) có vectơ chỉ phương là \(\overrightarrow {{u_d}} = \left( {6;5;3} \right)\).
Đúng
Sai
d) Đường thẳng \(d\) đi qua điểm \(K\left( {13; - 11;9} \right)\).
Đúng
Sai

Lời giải

a) Đ, b) S, c) S, d) Đ

a) Đường thẳng \({d_1}\) có vectơ chỉ phương là \(\overrightarrow {{u_1}} = \left( {1; - 1;1} \right)\).

b) Ta có \(\overrightarrow {{u_2}} = \left( {3;3; - 1} \right)\) là một vectơ chỉ phương của đường thẳng \({d_2}\).

Mặt phẳng đi qua điểm \(A\left( {1; - 1;3} \right)\) và vuông góc với đường thẳng \({d_2}\) nhận vectơ \(\overrightarrow {{u_2}} = \left( {3;3; - 1} \right)\) làm vectơ pháp tuyến có phương trình là \(3\left( {x - 1} \right) + 3\left( {y + 1} \right) - \left( {z - 3} \right) = 0\)\( \Leftrightarrow 3x + 3y - z + 3 = 0\).

c) Giả sử \(d \cap {d_1} = M\). Khi đó \(M\left( {2 + t; - 1 - t;1 + t} \right)\).

Đường thẳng \(d\) nhận \(\overrightarrow {AM} = \left( {1 + t; - t;t - 2} \right)\) làm vectơ chỉ phương.

Lại có \(d \bot {d_2}\) nên \(\overrightarrow {AM} .\overrightarrow {{u_2}} = 0 \Leftrightarrow \left( {1 + t} \right).3 + \left( { - t} \right).3 + \left( {t - 2} \right).\left( { - 1} \right) = 0\)\( \Leftrightarrow t = 5\).

Suy ra \(\overrightarrow {AM} = \left( {6; - 5;3} \right)\).

d) Đường thẳng \(d\) đi qua điểm \(A\left( {1; - 1;3} \right)\) và có một vectơ chỉ phương \(\overrightarrow {AM} = \left( {6; - 5;3} \right)\) có phương trình là \(\frac{{x - 1}}{6} = \frac{{y + 1}}{{ - 5}} = \frac{{z - 3}}{3}\).

Thay tọa độ điểm \(K\left( {13; - 11;9} \right)\) vào phương trình đường thẳng d ta được

\(\frac{{13 - 1}}{6} = \frac{{ - 11 + 1}}{{ - 5}} = \frac{{9 - 3}}{3}\) (đúng). Do đó đường thẳng \(d\) đi qua điểm \(K\left( {13; - 11;9} \right)\).

Câu 2

a) Vận tốc của vật tại thời điểm \(t\) giây là \(v\left( t \right) = \int {a\left( t \right)dt} \).
Đúng
Sai
b) Vận tốc của vật tại thời điểm \(t\) giây là \(v\left( t \right) = \ln \left| {\frac{{t + 1}}{{t + 2}}} \right| + 4\ln 2\).
Đúng
Sai
c) Vào thời điểm \(t = 10\;{\rm{s}}\) thì vận tốc của vật là \(2,86\;{\rm{m/s}}\).
Đúng
Sai
d) Không có thời điểm nào vận tốc của vật đạt \(v = 4\ln 2\;\left( {{\rm{m/s}}} \right)\).
Đúng
Sai

Lời giải

a) Đ, b) Đ, c) S, d) Đ

a) Vận tốc của vật tại thời điểm \(t\) giây là \(v\left( t \right) = \int {a\left( t \right)dt} \).

b) \(v\left( t \right) = \int {\frac{1}{{{t^2} + 3t + 2}}dt} \)\( = \int {\frac{1}{{\left( {t + 1} \right)\left( {t + 2} \right)}}dt} \)\( = \int {\left( {\frac{1}{{t + 1}} - \frac{1}{{t + 2}}} \right)dt} \)\( = \ln \left| {\frac{{t + 1}}{{t + 2}}} \right| + C\).

\({v_0} = 3\ln 2\left( {{\rm{m/s}}} \right)\) nên \(\ln \frac{1}{2} + C = 3\ln 2 \Rightarrow C = 4\ln 2\).

Do đó \(v\left( t \right) = \ln \left| {\frac{{t + 1}}{{t + 2}}} \right| + 4\ln 2\).

c) Có \(v\left( {10} \right) = \ln \frac{{11}}{{12}} + 4\ln 2 \approx 2,69\;{\rm{m/s}}\).

d) \(v\left( t \right) = \ln \left| {\frac{{t + 1}}{{t + 2}}} \right| + 4\ln 2 = 4\ln 2\)\( \Rightarrow \ln \left| {\frac{{t + 1}}{{t + 2}}} \right| = 0\)\( \Rightarrow \left| {\frac{{t + 1}}{{t + 2}}} \right| = 1\)\( \Rightarrow \left[ \begin{array}{l}\frac{{t + 1}}{{t + 2}} = 1\\\frac{{t + 1}}{{t + 2}} = - 1\end{array} \right.\) vô nghiệm.

Do đó không có thời điểm nào vận tốc của vật đạt \(v = 4\ln 2\;\left( {{\rm{m/s}}} \right)\).

Câu 6

a) Tọa độ của một vectơ pháp tuyến của mặt phẳng \(\left( P \right)\)\(\left( {1;2; - 1} \right)\).
Đúng
Sai
b) Điểm \(A\) thuộc mặt phẳng \(\left( P \right)\).
Đúng
Sai
c) Phương trình mặt cầu tâm \(A\) và có bán kính bằng khoảng cách từ điểm \(A\) đến mặt phẳng \(\left( P \right)\)\({\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 2} \right)^2} = 8\).
Đúng
Sai
d) Gọi \(\left( Q \right)\) là mặt phẳng đi qua điểm \(A\) và song song với mặt phẳng \(\left( P \right)\). Mặt phẳng \(\left( Q \right)\) có phương trình là \(x + 2y - z - 1 = 0\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP