PHẦN III. Câu trắc nghiệm trả lời ngắn. Thí sinh trả lời câu 1 đến câu 6.
Cho hàm số \(f\left( x \right) = 3{\cos ^2}\frac{x}{2} + \sin x\). Biết \(F\left( x \right)\) là một nguyên hàm của \(f\left( x \right)\) thỏa mãn \(F\left( 0 \right) = 5\). Tính giá trị \(F\left( {\frac{\pi }{4}} \right)\) (kết quả làm tròn đến hàng phần trăm).
PHẦN III. Câu trắc nghiệm trả lời ngắn. Thí sinh trả lời câu 1 đến câu 6.
Cho hàm số \(f\left( x \right) = 3{\cos ^2}\frac{x}{2} + \sin x\). Biết \(F\left( x \right)\) là một nguyên hàm của \(f\left( x \right)\) thỏa mãn \(F\left( 0 \right) = 5\). Tính giá trị \(F\left( {\frac{\pi }{4}} \right)\) (kết quả làm tròn đến hàng phần trăm).
Câu hỏi trong đề: Bộ 10 đề thi cuối kì 2 Toán 12 Cánh diều có đáp án !!
Quảng cáo
Trả lời:
Đáp án:
Trả lời: 7,53
Ta có \(F\left( x \right) = \int {f\left( x \right)dx} = \int {\left( {3{{\cos }^2}\frac{x}{2} + \sin x} \right)} dx\)\( = \int {\left( {3\frac{{1 + \cos x}}{2} + \sin x} \right)} dx\)
\[ = \int {\left( {\frac{3}{2} + \frac{{3\cos x}}{2} + \sin x} \right)} dx\]\[ = \frac{3}{2}x + \frac{3}{2}\sin x - \cos x + C\].
Vì \(F\left( 0 \right) = 5\) nên \[F\left( 0 \right) = - 1 + C = 5 \Rightarrow C = 6\].
Do đó \[F\left( x \right) = \frac{3}{2}x + \frac{3}{2}\sin x - \cos x + 6\].
Vậy \[F\left( {\frac{\pi }{4}} \right) = \frac{3}{2}.\frac{\pi }{4} + \frac{3}{2}\sin \frac{\pi }{4} - \cos \frac{\pi }{4} + 6 \approx 7,53\].
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
a) Đ, b) Đ, c) S, d) Đ
a) Vận tốc của vật tại thời điểm \(t\) giây là \(v\left( t \right) = \int {a\left( t \right)dt} \).
b) \(v\left( t \right) = \int {\frac{1}{{{t^2} + 3t + 2}}dt} \)\( = \int {\frac{1}{{\left( {t + 1} \right)\left( {t + 2} \right)}}dt} \)\( = \int {\left( {\frac{1}{{t + 1}} - \frac{1}{{t + 2}}} \right)dt} \)\( = \ln \left| {\frac{{t + 1}}{{t + 2}}} \right| + C\).
Mà \({v_0} = 3\ln 2\left( {{\rm{m/s}}} \right)\) nên \(\ln \frac{1}{2} + C = 3\ln 2 \Rightarrow C = 4\ln 2\).
Do đó \(v\left( t \right) = \ln \left| {\frac{{t + 1}}{{t + 2}}} \right| + 4\ln 2\).
c) Có \(v\left( {10} \right) = \ln \frac{{11}}{{12}} + 4\ln 2 \approx 2,69\;{\rm{m/s}}\).
d) \(v\left( t \right) = \ln \left| {\frac{{t + 1}}{{t + 2}}} \right| + 4\ln 2 = 4\ln 2\)\( \Rightarrow \ln \left| {\frac{{t + 1}}{{t + 2}}} \right| = 0\)\( \Rightarrow \left| {\frac{{t + 1}}{{t + 2}}} \right| = 1\)\( \Rightarrow \left[ \begin{array}{l}\frac{{t + 1}}{{t + 2}} = 1\\\frac{{t + 1}}{{t + 2}} = - 1\end{array} \right.\) vô nghiệm.
Do đó không có thời điểm nào vận tốc của vật đạt \(v = 4\ln 2\;\left( {{\rm{m/s}}} \right)\).
Lời giải
Trả lời: 1008
Ta có diện tích bức tường hình chữ nhật là \(10.8 = 80\left( {{{\rm{m}}^{\rm{2}}}} \right)\).
Chọn hệ trục tọa độ \(Oxy\) sao cho gốc \(O\) trùng với chân bên trái cổng parabol như hình sau:

Giả sử \(P:y = a{x^2} + bx + c\).
Vì \(\left( P \right)\) đi qua \(\left( {0;0} \right),\left( {2;4,8} \right),\left( {4;0} \right)\) nên ta có \(\left\{ \begin{array}{l}4a + 2b + c = 4,8\\16a + 4b + c = 0\\c = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = - \frac{6}{5}\\b = \frac{{24}}{5}\\c = 0\end{array} \right.\).
Do đó \(\left( P \right):y = - \frac{6}{5}{x^2} + \frac{{24}}{5}x\).
Diện tích của chiếc cổng là: \(S = \int\limits_0^4 {\left| { - \frac{6}{5}{x^2} + \frac{{24}}{5}x} \right|dx} = \frac{{64}}{5}\left( {{{\rm{m}}^{\rm{2}}}} \right)\).
Suy ra diện tích cần sơn là: \(80 - \frac{{64}}{5} = 67,2\left( {{{\rm{m}}^{\rm{2}}}} \right)\).
Chi phí cần để sơn là: \(67,2.15000 = 100800\) đồng = 1008 nghìn đồng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
