Một cửa hàng dự định nhập hai loại sản phẩm. Mỗi sản phẩm loại A có giá 200 nghìn đồng. Mỗi sản phẩm loại B có giá 300 nghìn đồng. Cửa hàng chỉ có số tiền tối đa là 12 triệu đồng để nhập hàng. Gọi \(x\) và \(y\) lần lượt là số sản phẩm loại A và loại B được nhập. Hãy lập bất phương trình theo \(x\) và \(y\) để biểu diễn điều kiện về chi phí mà cửa hàng phải thỏa mãn.
Quảng cáo
Trả lời:
Lời giải
Theo đề ta có \(200x + 300y \le 12000\). Chọn D.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Gọi \(x,y\left( {x,y \in \mathbb{N}} \right)\)lần lượt là số quyển vở và cây bút mà An mua được.
Giá để mua \(x\) quyển vở là \(7000x\) (đồng); giá để mua \(y\) quyển vở là \(5000y\) (đồng).
Theo đề ta có \(7000x + 5000y \le 250000\)\( \Leftrightarrow 7x + 5y \le 250\).
Nếu An đã mua 10 cây bút thì \(7x + 5 \cdot 10 \le 250 \Leftrightarrow x \le \frac{{200}}{7}\).
Vậy số quyển vở tối đa An có thể mua là 28 quyển vở.
Trả lời: 28.
Lời giải
Lời giải
Có \(2x - 5y + m \ge 0\)\( \Leftrightarrow m \ge - 2x + 5y\).
Để bất phương trình \(2x - 5y + m \ge 0\) nghiệm đúng với mọi cặp số \(\left( {x;y} \right)\) thỏa mãn hệ bất phương trình \(\left( I \right)\) thì \(m \ge \max \left( { - 2x + 5y} \right)\) với mọi cặp số \(\left( {x;y} \right)\) thỏa mãn hệ bất phương trình \(\left( I \right)\).
Miền nghiệm của hệ bất phương trình là miền tam giác \(ABC\)( kể cả cạnh của tam giác) (phần tô màu) với \(A\left( {2;3} \right),B\left( {8;3} \right),C\left( {4;1} \right)\).
Giá trị lớn nhất của biểu thức \(F\left( {x;y} \right) = - 2x + 5y\) đạt được tại một trong ba điểm \(A\left( {2;3} \right),B\left( {8;3} \right),C\left( {4;1} \right)\)
Ta có \(F\left( {2;3} \right) = - 2 \cdot 2 + 5 \cdot 3 = 11\); \(F\left( {8;3} \right) = - 2 \cdot 8 + 5 \cdot 3 = - 1\); \(F\left( {4;1} \right) = - 2 \cdot 4 + 5 \cdot 1 = - 3\).
Vậy giá trị lớn nhất của biểu thức \(F\left( {x;y} \right) = - 2x + 5y\) là 11.
Do đó \(m \ge 11\).
Vì m nhỏ nhất nên \(m = 11\).
Trả lời: 11.
Câu 3
a) \(\left( { - 1;3} \right)\) không là một nghiệm của hệ bất phương trình trên.
b) \(\left( { - 2;0} \right)\) là một nghiệm của hệ bất phương trình trên.
c) Hệ trên là một hệ bất phương trình bậc nhất hai ẩn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
a) Đường thẳng \(d\) đi qua điểm có tọa độ \(\left( {0;2} \right)\).
b) Các điểm thuộc miền nghiệm của hệ bất phương trình (I) đều có hoành độ không âm.
c) Miền nghiệm của hệ bất phương trình (I) chứa điểm \(M\left( {1; - 1} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

