Câu hỏi:

20/12/2025 30 Lưu

Tủ sách học tốt của lớp 9A có hai loại tạp chí, gồm tạp chí Toán học & Tuổi tr (TH&TT) và tạp chí Pi. Biết rằng số tạp ch TH&TT nhiều hơn số tạp chí Pi; tổng số tạp ch TH&TT và hai lần số tạp ch Pi nhiều hơn 54; tổng số tạp chí Pi và hai lần số tạp ch TH&TT t hơn 57. Tính số tạp chí mỗi loại.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi \(x\) là số tạp chí TH&TT; \(y\) là số tạp chí Pi \(\left( {x,\,\,y \in {\mathbb{N}^{\rm{*}}}} \right)\).

Theo đề bài ta có hệ bất phương trình sau:

\(\left\{ {\begin{array}{*{20}{l}}{x > y}\\{x + 2y > 54}\\{2x + y < 57}\end{array}} \right.\) nên \[\left\{ {\begin{array}{*{20}{l}}{x > y}\\{ - x + y > - 3}\end{array}} \right.\] hay \[\left\{ {\begin{array}{*{20}{l}}{x - y > 0}\\{x - y < 3}\end{array}} \right.\] suy ra \(0 < x - y < 3.\)

Vì \(x,\,\,y \in {\mathbb{N}^{\rm{*}}}\) nên \(x - y = 1\) hoặc \(x - y = 2.\)

– Trường hợp 1: \(x - y = 1\) hay \(x = y + 1\).

Từ \(\left\{ {\begin{array}{*{20}{l}}{x + 2y > 54}\\{2x + y < 57}\end{array}} \right.\) hay \(\left\{ {\begin{array}{*{20}{l}}{y + 1 + 2y > 54}\\{2\left( {y + 1} \right) + y < 57}\end{array}} \right.\) nên \(\left\{ {\begin{array}{*{20}{l}}{y > \frac{{53}}{3}}\\{y < \frac{{55}}{3}}\end{array}} \right.\), suy ra \(\frac{{53}}{3} < y < \frac{{55}}{3}.\)

Do đó \(y = 18\) suy ra \(x = 19\).

– Trường hợp 2: \(x - y = 2\) hay \(x = y + 2\)

Từ \(\left\{ {\begin{array}{*{20}{l}}{x + 2y > 54}\\{2x + y < 57}\end{array}} \right.\) hay \(\left\{ {\begin{array}{*{20}{l}}{y + 2 + 2y > 54}\\{2\left( {y + 2} \right) + y < 57}\end{array}} \right.\) nên \(\left\{ {\begin{array}{*{20}{l}}{y > 17}\\{y < \frac{{53}}{3}}\end{array}} \right.\) (không có số tự nhiên \(y\) thỏa mãn).
Vậy có 19 cuốn tạp chí TH&TT và 18 cuốn tạp chí Pi.

 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

1) Chứng minh tứ giác \(MAOB\) nội tiếp đường tròn.

Vì \(MA,\,\,MB\) là tiếp tuyến của đường tròn \(\left( O \right)\) (với \(A,B\) là các tiếp điểm) nên

\(MA \bot OA\,,\,\,MB \bot OB\)

Hay \(\widehat {OAM} = \widehat {OBM} = 90^\circ \).

Xét tứ giác \(MAOB\) có

\(\widehat {OAM} + \widehat {OBM} = 90^\circ  + 90^\circ  = 180^\circ \).

 

Cho đường tròn O và điểm \(M\) nằm ngoài đường tròn (ảnh 1)

Mà hai góc này ở vị trí đối diện nên tứ giác \(MAOB\) nội tiếp đường tròn.

2) Chứng minh \(\widehat {AEB} = \widehat {BEM}\).

Vì \(AC\,{\rm{//}}\,MB\,\,\left( {{\rm{gt}}} \right)\) nên \(\widehat {ACE} = \widehat {BME}\) (so le trong)

Mà \(\widehat {ACE} = \widehat {ABE}\) (góc nội tiếp cùng chắn cung \(AE)\), suy ra \(\widehat {ABE} = \widehat {BME}{\rm{.\;}}\)

Vì \(\Delta OBE\) cân tại \(O\) \(\left( {OB = OE} \right)\) nên \(\widehat {OBE} = \widehat {OEB}.\)

Suy ra \(\widehat {OBE} = \widehat {OEB} = \frac{{180^\circ  - \widehat {BOE}}}{2} = 90^\circ  - \frac{{\widehat {BOE}}}{2}.\)

Vì \[MB\] là  tiếp tuyến với đường tròn \[\left( O \right)\] tại điểm \[B\] nên \(OB \bot MB\) hay \(\widehat {OBM} = 90^\circ .\)

Suy ra \[\widehat {MBE} = 90^\circ  - \widehat {OBE}\]\[ = 90^\circ  - \left( {90^\circ  - \frac{{\widehat {BOE}}}{2}} \right) = \frac{{\widehat {BOE}}}{2}.\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\]

Mặt khác  nên \[\widehat {BAE} = \frac{{\widehat {BOE}}}{2}.\,\,\,\,\left( 2 \right)\]

Từ \[\left( 1 \right)\] và \[\left( 2 \right)\] suy ra \(\widehat {BAE} = \widehat {MBE}\).

Xét \(\Delta ABE\) và \(\Delta BME\) có: \(ABE = BME\,\,\left( {{\rm{cmt}}} \right)\); \(\widehat {BAE} = \widehat {MBE}\,\,\left( {{\rm{cmt}}} \right)\).

Do đó . Suy ra \(\widehat {AEB} = \widehat {BEM}\) (hai góc tương ứng) (đpcm).

3) Chứng minh \(ME \cdot MC = MH \cdot MO\) và ba điểm \(C,\,\,H,\,\,I\) thẳng hàng.

– Chứng minh \(ME \cdot MC = MH \cdot MO\).

Vì \(\Delta OAE\) cân tại \(O\) \(\left( {OA = OE} \right)\) nên \(\widehat {OAE} = \widehat {OEA}.\)

Suy ra \(\widehat {OAE} = \widehat {OEA} = \frac{{180^\circ  - \widehat {AOE}}}{2} = 90^\circ  - \frac{{\widehat {AOE}}}{2}.\)

Vì \[MA\] là  tiếp tuyến với đường tròn \[\left( O \right)\] tại điểm \[A\] nên \(OA \bot MA\) hay \(\widehat {OAM} = 90^\circ .\)

Suy ra \[\widehat {MAE} = 90^\circ  - \widehat {OAE}\]\[ = 90^\circ  - \left( {90^\circ  - \frac{{\widehat {AOE}}}{2}} \right) = \frac{{\widehat {AOE}}}{2}.\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\]

Mặt khác  nên \[\widehat {ACM} = \frac{{\widehat {AOE}}}{2}.\,\,\,\,\left( 2 \right)\]

Từ \[\left( 1 \right)\] và \[\left( 2 \right)\] suy ra \(\widehat {MAE} = \widehat {ACM}\).

Xét \(\Delta AME\) và \(\Delta CMA\) có: \(\widehat {AME}\) chung; \(\widehat {MAE} = \widehat {ACM}\) (cmt)

Do đó . Suy ra \(\frac{{MA}}{{ME}} = \frac{{MC}}{{MA}}\) hay \(M{A^2} = ME \cdot MC.\,\,\,\,\,\left( 1 \right)\)

Vi \(MA,\,\,MB\) là hai tiếp tuyến của đường tròn \(\left( O \right)\) nên \(MA = MB.\)

Lại có \(OA = OB\) nên \(MO\) là đường trung trực của \(AB\) nên \(AB \bot MO\) tại \[H.\]

Xét \[\Delta OAM\] vuông tại \(A\) có đường cao \(AH\), ta có \(M{A^2} = MH \cdot MO.\,\,\,\,\,\left( 2 \right)\)

Từ \(\left( 1 \right)\) và \(\left( 2 \right)\) suy ra \(ME \cdot MC = MH \cdot MO\) (đpcm).

– Chứng minh ba điểm \(C,\,\,H,\,\,I\) thẳng hàng.

Do \(I\) lả điểm đối xứng của \(E\) qua \(OM\) nên \(OM\) là đường trung trực của \(EI\) nên \(OE = OI,\) suy ra \(I \in \left( {O\,;R} \right).\)

Do \(ME \cdot MC = MH \cdot MO\) nên \(\frac{{ME}}{{MH}} = \frac{{MO}}{{MC}}\).

Xét \(\Delta MEH\) và \(\Delta MOC\) có \(\widehat {OME}\) chung; \(\frac{{ME}}{{MH}} = \frac{{MO}}{{MC}}\) (cmt).

Do đó  suy ra \(\widehat {MHE} = \widehat {MCO}\) (hai góc tương ứng).

Mà \(\widehat {MHE} + \widehat {EHO} = 180^\circ \) nên \(\widehat {MCO} + \widehat {EHO} = 180^\circ .\)

Mà \[\widehat {MCO}\] và \[\widehat {EHO}\] ở vị trí đối diện nên tứ giác \(EHOC\) nội tiếp đường tròn.

Suy ra \(\widehat {EHC} = \widehat {EOC}\) (cùng chắn cung \(EC\,).\)

Ta có \(\widehat {IHE} = 2\widehat {MHE}\) (tính chất đường trung trực)

Mà \(\widehat {MHE} = \widehat {MCO}\) nên

\(\widehat {IHE} + \widehat {EHC} = 2\widehat {MHE} + \widehat {EOC}\)\( = 2\widehat {MCO} + \widehat {EOC} = \widehat {MCO} + \widehat {CEO} + \widehat {EOC} = 180^\circ \).

Vậy ba điểm \(C,\,\,H,\,\,I\) thẳng hàng.

Lời giải

1) Gọi \(x,y\,\,\left( m \right)\) lần lượt là chiều dài và chiều rộng của mảnh đất đã cho \[\left( {x,y > 0\,;\,\,x > y} \right).\]

Nửa chu vi mảnh đất hình chữ nhật là: \(52:2 = 26\,\,\left( {\rm{m}} \right)\) hay \(x + y = 26. & \left( 1 \right)\)

Diện tích mảnh đất hình chữ nhật là: \(\left( {x - 2} \right)\left( {y - 2} \right) = 112\) hay \(xy - 2\left( {x + y} \right) = 108.\,\,\,\,\,\left( 2 \right)\)

Thay \[\left( 1 \right)\] vào \[\left( 2 \right)\] ta có \(xy - 2 \cdot 26 = 108\) nên \(xy = 160. & \left( 3 \right)\)

Từ \[\left( 1 \right)\]\(\left( 3 \right)\) ta có hệ phương trình \(\left\{ \begin{array}{l}x + y = 26\\xy = 160\end{array} \right.\).

Từ phương trình thứ nhất ta có \(y = 26 - x\). Thế vào phương trình thứ hai, ta được

\(x\left( {26 - x} \right) = 160\) hay \({x^2} - 26x + 160 = 0 & \left( * \right)\)

Giải phương trình \(\left( * \right)\), ta được: \(x = 16\) hoặc \(x = 10\).

– Với \(x = 16\) thì \(y = 26 - 16 = 10\) (thỏa mãn điều kiện \[x > y).\]

– Với \(x = 10\) thì \(y = 26 - 10 = 16\) (không thỏa mãn điều kiện \[x > y).\]

Vậy chiều dài ban đầu của khu vườn là \(10\,\,{\rm{m}}\) và chiều rộng ban đầu của khu vườn là \(16\,\,{\rm{m}}{\rm{.}}\)

2) Thể tích của viên bi là: \({V_{bi}} = \frac{4}{3}\pi \cdot {3^3} = 36\pi \left( {{\rm{c}}{{\rm{m}}^3}} \right)\).

Phần thể tích nước tăng lên sau khi thả viên bi là:

\({V_t} = \pi {R^2}h = \pi \cdot {5^2} \cdot h = 25\pi h\,\,\left( {{\rm{c}}{{\rm{m}}^3}} \right).\)

Vì phần thể tích nước tăng bằng thể tích của viên bi nên \(25\pi h = 36\pi \), suy ra \(h = \frac{{36}}{{25}}\,\,\left( {{\rm{cm}}} \right).\)

Vậy sau khi thả viên bi vào thì mực nước trong ly dâng lên \(\frac{{36}}{{25}}\,\,{\rm{cm}}.\)