Câu hỏi:

20/12/2025 48 Lưu

1) Trong mặt phẳng tọa độ \[Oxy,\] cho hai đường thẳng \(\left( d \right):y = \left( {{m^2} - 3} \right)x + 3\) và \(\left( {d'} \right):y = 6x + m.\) Tìm tất cả các giá trị của \[m\] để hai đường thẳng trên song song với nhau.

2) Giải hệ phương trình \(\left\{ \begin{array}{l}x + 5y =  - 7\\x - 4y = 11.\end{array} \right.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

1) Để \[\left( d \right)\,{\rm{//}}\,\left( {d'} \right)\] thì \(\left\{ \begin{array}{l}{m^2} - 3 = 6\\m \ne 3\end{array} \right.\) hay\(\left\{ \begin{array}{l}{m^2} = 9\\m \ne 3\end{array} \right.\) suy ra \(m = - 3.\)

Vậy với \(m = - 3\) thì hai đường thẳng đã cho song song với nhau.

2) Giải hệ phương trình \(\left\{ \begin{array}{l}x + 5y = - 7\\x - 4y = 11.\end{array} \right.\)

Trừ từng vế hai phương trình thứ nhất và thứ hai của hệ phương trình, ta được:

\(9y = - 18,\) suy ra \(y = - 2.\)

Thay \(y = - 2\) vào phương trình \(x + 5y = - 7,\) ta được:

\(x + 5 \cdot \left( { - 2} \right) = - 7,\) suy ra \(x = 3.\)

Vậy hệ phương trình có nghiệm duy nhất là \[\left( {x;{\rm{ }}y} \right) = \left( {3;\,\, - 2} \right).\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

1) Với \(x > 0,\,\,x \ne 1\) ta có:

\(P = \frac{{\sqrt x + 1}}{{\sqrt x - 1}} + \frac{{2\sqrt x + 1}}{{x - \sqrt x }} + \frac{1}{{\sqrt x }}\)

\( = \frac{{\left( {\sqrt x + 1} \right)\sqrt x }}{{\left( {\sqrt x - 1} \right)\sqrt x }} + \frac{{2\sqrt x + 1}}{{\sqrt x \left( {\sqrt x - 1} \right)}} + \frac{{\sqrt x - 1}}{{\sqrt x \left( {\sqrt x - 1} \right)}}\)

\( = \frac{{x + \sqrt x + 2\sqrt x + 1 + \sqrt x - 1}}{{\left( {\sqrt x - 1} \right)\sqrt x }}\)\( = \frac{{x + 4\sqrt x }}{{\sqrt x \left( {\sqrt x - 1} \right)}}\)

\( = \frac{{\sqrt x \left( {\sqrt x + 4} \right)}}{{\sqrt x \left( {\sqrt x - 1} \right)}} = \frac{{\sqrt x + 4}}{{\sqrt x - 1}}.\)

Vậy với \(x > 0,\,\,x \ne 1\) thì \(P = \frac{{\sqrt x + 4}}{{\sqrt x  - 1}}.\)

2) Với \(x > 0,\,\,x \ne 1\) ta có: \(P < 0\) tức là \(\frac{{\sqrt x + 4}}{{\sqrt x - 1}} < 0\) suy ra \(\sqrt x - 1 < 0\) (vì \(\sqrt x + 4 > 0)\)

Do đó \(\sqrt x < 1\) hay \(x < 1.\)

Kết hợp với điều kiện \(x > 0,\,\,x \ne 1\) ta có \(0 < x < 1.\)

Lời giải

Áp dụng bất đẳng thức Cauchy cho các số thực dương \[a,{\rm{ }}b,{\rm{ }}c\] và \[abc = 1,\] ta có:

          \({a^4}\left( {{b^2} + {c^2}} \right) = {a^2}\left( {{a^2}{b^2} + {a^2}{c^2}} \right) \ge {a^2} \cdot 2\sqrt {{a^4}{b^2}{c^2}} = 2{a^3}.\)

Chứng minh tương tự, ta được \({b^4}\left( {{c^2} + {a^2}} \right) \ge 2{b^3};\,\,\,{c^4}\left( {{a^2} + {b^2}} \right) \ge 2{c^3}.\)

Khi đó ta được:

          \(P = \frac{{{a^4}\left( {{b^2} + {c^2}} \right)}}{{{b^3} + 2{c^3}}} + \frac{{{b^4}\left( {{c^2} + {a^2}} \right)}}{{{c^3} + 2{a^3}}} + \frac{{{c^4}\left( {{a^2} + {b^2}} \right)}}{{{a^3} + 2{b^3}}}\)\( \ge \frac{{2{a^3}}}{{{b^3} + 2{c^3}}} + \frac{{2{b^3}}}{{{c^3} + 2{a^3}}} + \frac{{2{c^3}}}{{{a^3} + 2{b^3}}}\)

Đặt \(M = \frac{{2{a^3}}}{{{b^3} + 2{c^3}}} + \frac{{2{b^3}}}{{{c^3} + 2{a^3}}} + \frac{{2{c^3}}}{{{a^3} + 2{b^3}}}\) và \(\left\{ \begin{array}{l}x = {b^3} + 2{c^3}\\y = {c^3} + 2{a^3}\\z = {a^3} + 2{b^3}.\end{array} \right.\)

Khi đó ta được \(\left\{ \begin{array}{l}{b^3} = \frac{{x - 2y + 4z}}{9}\\{c^3} = \frac{{y - 2z + 4x}}{9}\\{a^3} = \frac{{z - 2x + 4y}}{9}\end{array} \right.\)

Suy ra \(M = \frac{{2\left( {z - 2x + 4y} \right)}}{{9x}} + \frac{{2\left( {x - 2y + 4z} \right)}}{{9y}} + \frac{{2\left( {y - 2z + 4x} \right)}}{{9z}}\)

\( = \frac{2}{9}\left[ {\left( {\frac{z}{x} + \frac{x}{y} + \frac{y}{z}} \right) + 4\left( {\frac{y}{x} + \frac{z}{y} + \frac{x}{z}} \right) - 6} \right]\)

Áp dụng bất đẳng thức Cauchy với 3 số dương ta có:

                    \(\frac{z}{x} + \frac{x}{y} + \frac{y}{z} \ge 3 \cdot \sqrt[3]{{\frac{z}{x} \cdot \frac{x}{y} \cdot \frac{y}{z}}} = 3;\)

                    \(\frac{y}{x} + \frac{z}{y} + \frac{x}{z} \ge 3 \cdot \sqrt[3]{{\frac{y}{x} \cdot \frac{z}{y} \cdot \frac{x}{z}}} = 3.\)

Khi đó ta được: \(P \ge M = \frac{2}{9}\left[ {\left( {\frac{z}{x} + \frac{x}{y} + \frac{y}{z}} \right) + 4\left( {\frac{y}{x} + \frac{z}{y} + \frac{x}{z}} \right) - 6} \right] \ge \frac{2}{9}\left( {3 + 4 \cdot 3 - 6} \right) = 2.\)

Đẳng thức xảy ra khi và chỉ khi \[a = b = c = 1.\]

Vậy giá trị nhỏ nhất của biểu thức \(P\) là \[2\] khi \[a = b = c = 1.\]