1) Cho 9 hình vuông có độ dài các cạnh là 9 số nguyên dương liên tiếp. Gọi \(S\) là tổng diện tích của 9 hình vuông đã cho. Tồn tại hay không một hình vuông có cạnh là một số nguyên dương và có diện tích là \(S\).
2) Vẽ bất kì 17 đường tròn, mỗi đường tròn có độ dài đường kính là một số nguyên dương. Chứng minh rằng trong 17 đường tròn đó ta luôn chọn được năm đường tròn có tổng độ dài các đường kính là một số chia hết cho 5.
1) Cho 9 hình vuông có độ dài các cạnh là 9 số nguyên dương liên tiếp. Gọi \(S\) là tổng diện tích của 9 hình vuông đã cho. Tồn tại hay không một hình vuông có cạnh là một số nguyên dương và có diện tích là \(S\).
2) Vẽ bất kì 17 đường tròn, mỗi đường tròn có độ dài đường kính là một số nguyên dương. Chứng minh rằng trong 17 đường tròn đó ta luôn chọn được năm đường tròn có tổng độ dài các đường kính là một số chia hết cho 5.
Quảng cáo
Trả lời:
|
Gọi \(x,\,x + 1,\,x + 2,\,x + 3,\,x + 4,\,x + 5,\,x + 6,\,x + 7,\,x + 8\) với \(x\) là số nguyên dương lần lượt là cạnh của các hình vuông đã cho, suy ra \[S = {x^2} + {\left( {\,x + 1} \right)^2} + {\left( {\,x + 2} \right)^2} + {\left( {\,x + 3} \right)^2} + {\left( {\,x + 4} \right)^2} + {\left( {\,x + 5} \right)^2} + \,{\left( {x + 6} \right)^2} + {\left( {x + 7} \right)^2} + {\left( {\,x + 8} \right)^2}\] |
|
Rút gọn \[S = 9{x^2} + 72x + 204\]. Gọi hình vuông cần tìm có cạnh là \(y\) với \(y\) là số nguyên dương, ta có \[9{x^2} + 72x + 204 = {y^2}\left( 1 \right)\] |
|
Ta có \[9{x^2} + 72x + 204 = 9\left( {{x^2} + 8x + 22} \right) + 6\] chia cho 9 dư 6. Mặt khác \({y^2}\) chia cho 9 có số dư là \(r \in \left\{ {0;\,1;4;7} \right\}\) suy ra phương trình \(\left( 1 \right)\) vô nghiệm. |
|
Vậy không tồn tại hình vuông thỏa mãn yêu cầu bài toán. |
|
2) Gọi các số tự nhiên \({a_1},{a_2},...,{a_{17}}\) lần lượt là độ dài đường kính 17 đường tròn đã vẽ và \({r_1},{r_2},...,{r_{17}}\) là số dư khi chia lần lượt \({a_1},{a_2},...,{a_{17}}\) cho 5. |
|
Ta có: \({r_1},{r_2},...,{r_{17}} \in {\rm{\{ }}0;1;2;3;4\} \) |
|
Nếu trong 17 số \({r_1},{r_2},...,{r_{17}}\) tồn tại năm số bằng nhau, chẳng hạn: \({r_1} = {r_2} = {r_3} = {r_4} = {r_5}\) Thì ta có \({a_1} + {a_2} + {a_3} + {a_4} + {a_5}\) chia hết cho 5. |
|
Nếu trong 17 số \({r_1},{r_2},...,{r_{17}}\) không có năm số nào bằng nhau, tức là tối đa 4 số bằng nhau, chẳng hạn có 4 nhóm 4 số bằng nhau, như vậy 17 số dư được phân thành 4 lớp mà mỗi lớp có 4 phần tử và 1 lớp có 1 phần tử với các phần tử đại diện là 0;1;2;3;4. Lúc đó lấy trong mỗi lớp 1 số sẽ được năm số có giá trị đôi một khác nhau. Chẳng hạn \({r_1} \ne {r_2} \ne {r_3} \ne {r_4} \ne {r_5}\)và \({r_1} + {r_2} + {r_3} + {r_4} + {r_5} = 10\) nên \({a_1} + {a_2} + {a_3} + {a_4} + {a_5}\) chia hết cho 5. |
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
|
Biến đổi phương trình thành: \(({x^2} + 8x + 11 - 4)({x^2} + 8x + 11 + 4) = 1\) . Đặt \(t = {x^2} + 8x + 11\) và giải được \(t = \sqrt {17} ,\;t = - \sqrt {17} \) . |
|
Với \(t = \sqrt {17} \Rightarrow {x^2} + 8x + 11 - \sqrt {17} = 0\) có \({x_1}.{x_2} = 11 - \sqrt {17} \) |
|
Với \(t = - \sqrt {17} \Rightarrow {x^2} + 8x + 11 + \sqrt {17} = 0\) có \({x_3}.{x_4} = 11 + \sqrt {17} \) |
|
Vậy \(P = {x_1}.{x_2}.{x_3}.{x_4} = (11 - \sqrt {17} )(11 + \sqrt {17} ) = 104\) |
Lời giải
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.